

1

TECHNICAL REPORT: ICS-FORTH/TR-407, JULY 2010, COPYRIGHT BY INSTITUTE OF

COMPUTER SCIENCE, FOUNDATION FOR RESEARCH & TECHNOLOGY - HELLAS [2010]

A Detailed Evaluation of Threshold Algorithms for Answering Top-k queries

in Peer-to-Peer Networks

Ioannis Chrysakis 1 Constantinos Chalkidis 1, Dimitris Plexousakis
 1

1
Institute of Computer Science, FORTH, N. Plastira 100, Vassilika Vouton,

GR-70013 Heraklion, Greece

{hrysakis@ics.forth.gr, conhalk@csd.uoc.gr, dp@ics.forth.gr}

Abstract. Ranking queries, also known as top-k queries, have drawn

considerable attention due to their usability in various applications. Several

algorithms have been proposed for the evaluation of top-k queries. A large

percentage of them follow the Threshold Approach. In p2p networks, top-k

query processing can provide a lot of advantages both in time and bandwidth

consumption. We focus on the main adaptations of threshold algorithms

fulfilling the requirements of modern p2p applications. We introduce two

algorithms optimized for ranking queries in p2p networks and present their

characteristics. In the setting of a simulation of large p2p networks, we evaluate

the performance of Threshold Algorithms. Our experiments demonstrate that in

some cases a threshold algorithm can improve top-k query processing, while in

others it is far more costly. The results show that distributed query processing

can be more effective than a simple threshold algorithm in a p2p network.

Keywords: Top-k queries, query processing, peer-to-peer networks,

distributed search and systems.

1 Introduction

With the amount of available data growing rapidly in various contexts, applications

and scenarios, the need for answering queries effectively is increasing dramatically as

well. The use of ranking queries provides a solution to the problem of effective

search. It was first used for relational databases [1], [2], or standalone applications

[3], but it can be also used for distributed applications like peer data management

systems, which manipulate a huge amount of data while sharing information across

peers [4]. Ranking queries, also known as top-k queries, produce results that are

ordered on some computed score. A top-k query over defined subsystems returns the

objects with the k-highest aggregated scores under a monotonic function. Rank-aware

query processing has become a vital need for many applications, especially in modern

large-scale distributed applications as top-k queries enable fast, reliable and ad-hoc

filtering of results. In this work, we study the problem of answering top-k queries

over p2p networks under the general assumption that each peer maintains its own

ranked data. The naïve solution to process a top-k query is to ask all peers to send

their scores to the query originator, which merges all the results and returns the top-k

ICS-FORTH, Technical Report 407, July 2010

2

ones. However, an efficient top-k algorithm should return the highest k results by

limiting the messages transferred across peers, without examining all scores in a fixed

number of rounds.

Taking into account the p2p context and these characteristics we seek efficient

ways to answer global top-k queries that are issued in the underlying network. We

focus mainly on the promising Threshold-based techniques in order to retrieve the

highest ranked results. This family of algorithms promises standard phases of

termination which means limited transferred bytes and fast query answering, exact

matching of results, easy setup and use as soon as peers have their data ranked

according to the specified criteria. These data could be manipulated explicitly by

peers (e.g. as in recommendation systems) where each user ranks its objects, or could

be gathered by peers who receive information according to the context (e.g. in

network monitoring, sensor networks, community mining). However, to the best of

our knowledge, these algorithms have not been evaluated yet in p2p networks and it is

not obvious whether they can be effectively used. From this family of algorithms, we

take as a base a most promising algorithm called Hybrid Threshold (HT) [5] and

adapt it to a p2p network structured according to a super-peer topology.

The contributions of this report are threefold. Firstly, it presents the evaluation of

exact threshold algorithms in large scale p2p networks with different data

distributions across nodes. In fact, both original HT [5] and TPUT [6] algorithms have

been tested only as standalone applications (in one host computer, with native java

simulation) for maximum numbers of 100 and 128 nodes respectively and without

regarding execution times. Also TPUT assumes that all the scores are following only

the uniform distribution which is not realistic. Additionally, there is no study directly

comparing HT and TPUT neither in centralized nor in distributed settings. Secondly,

this report presents two extended versions of the HT algorithm which could be

applied for peers that host various kinds of data in any p2p network which could

support a super-peer topology for top-k query answering. Finally, the results of this

study provide useful conclusions regarding the applicability of threshold techniques

for current or future p2p data management applications.

The rest of the report is organized as follows. In section 2 we present the state of

the art threshold-based algorithms suitable for answering top-k queries in distributed

environments. We analyse their main advantages and compare them by extracting

their qualitative characteristics. Also, we briefly mention the related algorithms which

don’t belong to this category of algorithms, some related research fields and problems

and finally some recent approaches in the area of top-k query processing. In section 3

we present the general problem statement and our suggestions for the adaptation of

previous threshold algorithms to p2p context. Then we present two extended versions

of the Hybrid Threshold algorithm called HT-p2p and HT-p2p plus. The former is

presented step by step with a simple example, while for the latter a proof of

correctness is presented. In section 4 a detailed evaluation of top-k threshold

techniques is presented including our new extended versions and in various scenarios

in order to ascertain their efficiency. Section 5 presents our conclusions and some

thoughts for discussion.

Ioannis Chrysakis, Contantinos Chalkidis and Dimitris Plexousakis

3

2 Background and Related Work

The most prominent work in top-k query processing has been defined by the

seminal approach of Fagin et al. on the Threshold Algorithm (TA) [3] which was

designed for standalone database applications. But especially for p2p applications, TA

seems insufficient since it requires several round-trips to return the results because it

doesn‟t take data distributions into account. These characteristics cause TA to have

unpredictable time and network consumption with a lot of messages transferred for

each round-trip across the network, which constitutes a poor query answering

performance. To the direction of TA adjustment for distributed networks, four

algorithms TPUT [6] and {TPAT, TPOR, HT} [5] have been presented including 3

basic phases and using thresholds to order to determine the final top-k set of objects.

These algorithms seem to overcome the problems of TA, like unbounded message

rounds and belong to the class of exact algorithms which means that they return

exactly the real highest ranked objects without any kind of prediction. TPUT prunes

ineligible objects based on their scores in 3 standard phases and in its evaluation

outperforms TA in most cases [5]. TPAT does not belong to the category of exact

algorithms since it uses statistics to further enhance the pruning power of TPUT.

However, both TPAT and TPUT algorithm assume uniform data distribution which

could be restrictive as, in real p2p systems some peers may host data following other

distributions. TPOR prunes ineligible objects by their rankings (positions in sorted

lists). The Hybrid Threshold Algorithm [5] combines the advantages of both TPUT

and TPOR, estimates data distributions without a-priori knowledge, which means that

it does not assume a specific distribution of scores. It is based on partial sums and

upper bounds to prune non-eligible objects, and terminates in a fixed number of 3 + 1

phases. Performance comparisons regarding bandwidth consumption [5] showed that

HT outperforms the other algorithms of this family. In table 1 we summarize the

characteristics of these algorithms that belong to threshold-based top-k query

processing techniques.

It is worth noting that all the above algorithms except TPAT belong to the family

of exact algorithms, which means that they always return the highest ranked objects

correctly without using any sense of probabilities. The latter refers to another category

of algorithms usually termed as approximate algorithms. These algorithms are based

on the idea that, given a top-k query, a probabilistic guarantee that “x percent of the

retrieved objects are among the top-k objects we would get if we had asked all peers

in the system” can be provided. The final pruning of objects under specific

probabilistic guarantees is achieved using routing filters and histograms. The main

limitation of this approach is that it resorts to broadcasting when the desired number

of results is too high or, when the user asks for a high degree of accuracy (approaches

exactly the results like exact algorithms). Moreover, all algorithms of this family are

based on TA [3], so they need several round-trips for retrieving the final results. The

most promising approach of this family seems to be the KLEE framework [7] which

terminates in a fixed number of communication rounds.

A different distributed approach is presented by Nejdl. et. al. [8, 9]. It combines

ideas of semantic query routing based on indices and proposes a decentralized top-k

query evaluation algorithm which is based on dynamically collected statistics put into

local indices. However, the first time all peers have to participate in processing the

ICS-FORTH, Technical Report 407, July 2010

4

query. Then, several roundtrips are required for obtaining the final result. Also, in the

case where the query is not contained in indices the algorithm needs more time and

network bandwidth. In [10], some novel methods are presented for optimizing top-k

aggregation queries for both exact and approximate algorithms based on choosing

different thresholds for each peer (instead of a global threshold at each phase). It

would be interesting for this work to evaluate more network factors such as

bandwidth consumption and the ad-hoc behavior of algorithms when peers join or

leave the p2p network frequently. The same authors extended their work in a first

attempt to compare TPUT and KLEE in either exact or approximate mode with the

suitable adjustments [11]. The results showed that the adjusted version TPUT is

slightly preferable than that of KLEE considering bandwidth and response time

performance.

Table 1. Comparison of top-k threshold query processing algorithms

Algorithm TPUT TPAT TPOR HT

Exact Matching of

results

Yes No Yes Yes

Assumes specific

data distribution

Yes (uniform) No Yes (uniform) No (works

without

having a-

priori

knowledge)

Communication

Phases

3 3 3 3+1

Evaluated in p2p

networks

No No No No

3 Methodology

3.1 Motivation

Nowadays, the p2p model is used for diverse applications and services, including

content storage, sharing (file-sharing, content distribution, backup storage) and

communication (voice, instant messages, multicast) to name a few. The size of data is

increasing rapidly at peers day by day, so the problem of effective search in peer-to-

peer networks becomes more crucial than ever. This problem could be divided into

two problems: query routing and query processing. First, we have to decide where to

route each submitted query instead of broadcasting the query to the entire network

which is the naïve case of routing. Secondly, we have to decide which peers should

participate to the query processing stage. In this work we do not study the problem of

how to route the query to relevant peers, but how we can process efficiently the query

using top-k query processing techniques upon our ranked data.

Ioannis Chrysakis, Contantinos Chalkidis and Dimitris Plexousakis

5

3.2 Data Model and Problem Statement

Following the query model of [5, 6] we assume that each peer maintains a list of

pairs (O, Si(O)) where O is an object and Si(O) is the score of the corresponding

object. From this point on, when we refer to object O we mean the Object_id of O and

not the actual object. The algorithm manipulates (sends, receives etc.) object

identifiers. The objects (object_ids) in each list are sorted in descending order of their

scores. If an object does not appear in the list of a peer, its score in that list is zero by

default. After submitting the query to relevant peers according to the specified routing

strategy, our goal is to find the k-highest aggregated values (f(S1(O),...,Sm(O)),

where f is a monotonic function, which is used to compute the overall score of an

object. We use the SUM function for ease of exposition. The objects with the k-

highest values are denoted as top-k objects. Objects can be thought of as, e.g., RDF

resources if peers host RDF/S data or tuples if they host relational databases. Each

object is scored according to the selected scoring technique which in turn determines

the applied function accordingly to the specified needs of each p2p application. For

example we could use a weighted monotonic function for the computation of the final

score for each object like the formula: Final Score = w1*s1 + w2*s2 + w3*s3 where

w1, w2, w3 could be some predefined weights for each property according to the

preferences of the user who sends the query to the system. For our algorithms all

scores for discrete objects are taken as input to calculate the top-k set.

All threshold algorithms are trying to use appropriate thresholds in order to prune

some ineligible objects with low aggregated scores and return finally the top-k set of

objects. In this report, we study the problem of answering top-k queries efficiently.

An efficient top-k retrieval algorithm in such context should take into account first of

all the bandwidth consumption and the execution time as a real p2p system may

receive thousands of queries per time. Also some other characteristics need to be

addressed, such as the ad-hoc behavior of peers, the different distributions of scores,

the scalability and the topology of the network. A representing case of threshold

algorithm is the HT [5] which resulted from a combination of TPAT and TPOR [5].

The first experiments on bandwidth consumption performance showed that HT

outperforms TPAT, TPOR and the alternative approach of TPUT [6] as well. Thus in

the next subsection, we try to verify whether the HT algorithm could be fully adapted

from middleware to p2p environment emphasizing the main directions for all

threshold algorithms. To the best of our knowledge, none of the algorithms of this

family has been adapted and tested in p2p environment.

3.3 Main Directions and Adaptations

Due to the aggregation nature of top-k problem, it is obvious that a central manager

is required (to gather the results and forward the answers), as well as, a suitable

network topology in order to avoid flooding of network messages. A super-peer

topology combines these issues as super-peers play the role of central managers for

each cluster of peers for which they are responsible. One idea for this classification of

peers could be by semantic criteria, similarly to the idea of Semantic Overlay

Networks [17]. Thus by applying a suitable routing mechanism which determines the

ICS-FORTH, Technical Report 407, July 2010

6

relevant peers each super-peer should process only a subset of queries which are

semantically matched. The problem of query routing as we mentioned before is out of

the scope, although with techniques like [13] a query routing algorithm could be

combined efficiently. Thus, the extended versions of HT are built upon this super-

peer topology and could be supported generally by all the threshold algorithms.

Having in mind that peers could join or leave the network frequently, the top-k

algorithm should first take into account this characteristic in order to define a

consistent policy. Secondly it could store some intermediate results in order to

enhance the whole processing technique. The HT algorithm processes the incoming

queries on the fly and does not study the case when a peer enters or leaves the

network during its execution. In the extended version HT-p2p we choose to save the

intermediate results and apply a specific policy for ad-hoc peers in order to be

consistent. The storing ability of HT-p2p helps pruning some steps of the HT basic

algorithm. The required data for saving are limited to seen object_ids, scores, partial

sums which means that their capacity in bytes is fairly low. On the other hand we gain

processing cost (no need for examining again the “examined” seen objects) and

communication cost as well (the pruning of some steps entails fewer transferred

messages and less bandwidth consumption).

Finally, for modeling reasons it is preferable to define discrete roles at peers for the

HT-p2p algorithm. The peer that issues the original query across the p2p network is

called an Originator peer. Respectively, its responsible super-peer plays the role of

Originator super-peer. Each relevant to the query peer is called Contributor peer. A

Collector super-peer executes the specific running instance of HT-p2p. It collects the

intermediate results from all the contributor peers and returns them to the Originator

super-peer. For the selection of the Collector super-peer we could take into account

the number of Contributor peers or the number of the relevant objects. In the next

subsections we present the extended versions of HT called HT-p2p and HT-p2p plus

which use these terminology concepts. Before presenting analytically the extended

versions of HT we present a brief comparison of all versions based on their main

differences.

Table 2. Comparison of all version of the HT algorithm

Algorithm HT (Original) HT-p2p HT-p2p plus

Network

Topology

Unstructured Super-Peer Super-Peer

Storing ability

of intermediate

results

No Yes Yes

Fully

Distributed

No No Yes

Evaluated in

p2p networks

No Yes Yes

Ioannis Chrysakis, Contantinos Chalkidis and Dimitris Plexousakis

7

3.4 The HT-p2p Algorithm Step By Step

Let‟s assume that the Collector super-peer is SP1 and the relevant peers according

to the routing strategy are: Peer1, Peer2, and Peer3 (m=3). These peers are the

contributors to a sample query. Let‟s assume that the Originator peer is peer1, so SP1

is also the Originator super-peer and we are looking for a top-2 query (k = 2). Table 1

below depicts the (Object_id, Score) pairs at each peer of SP1. The steps performed

by HT-p2p for the sample top-2 query are the following:

Table 3. (Object_id, Score) pairs at each peer of SP1

Peer1 Peer2 Peer3

(O4, 21) (O5, 32) (O3, 30)

(O2, 17) (O1, 29) (O5, 14)

(O5, 11) (O18, 29) (O18, 9)

(O3, 11) (O3, 26) (O4, 7)

(O6, 10) (O9, 20) (O2, 1)

(O7, 10) (O4, 9) (O8, 1)

(O11, 8) (O14, 5)

(O12, 6) (O16, 2)

(O15, 6) (O13, 1)

(O13, 4)

 In Phase 1 each Contributor peer sends its top-k objects to the Collector super-

peer. The latter calculates the partial sums for all objects seen so far and identifies

the objects with the k-highest partial sums. The Collector super-peer stores all

intermediate results of this phase (seen objects, their scores, and their partial sums).

For an object O, the partial sum Spsum(O) = S’1(O) + … + S’m(O) where S‟i(O) =

Si(O) if O has been reported by peer i to the Super-peer, and S‟i(O) = 0 otherwise.

An object has been reported by a peer if it has been sent with its score to a super-

peer at least once, so it has been stored.

 Thus, Peer1 sends its top-2 objects with its corresponding scores to SP1: (O4, 21),

(O2, 17). Peer2 sends respectively (O5, 34), (O1, 29) to SP1 and Peer3 sends (O3,

30), (O5, 14). Then SP1 calculates the partial sums (Spsum) for all seen objects:

Spsum(O4) = 21, Spsum(O2) = 17, Spsum(O5) = 48, Spsum(O1) = 29, Spsum(O3)

= 30. The k=2 highest partial sums belong to O5, O3 and their value is 46, 30

respectively. SP1 stores all the intermediate results of this phase.

 In Phase 2 the Collector super-peer sends the list L and the threshold T = τ1/m to

all the Contributor peers in the p2p network, where: {L = list of the top-k object

IDs from the partial sum list, τ1 called “phase1 bottom” = the k-th highest partial

sum and m = the number of peers at the specified cluster of super-peer}. As per

Phase 1, τ1 = 30 and the list L contains O5, O3. Thus SP1 broadcasts the list L =

{O5, O3} and the threshold T =10 since it is equal to the fraction: τ1 / m where m

= 3.

 Upon receiving the list L, for each object Oj in L: peer i finds its local score termed

Sij, and determines the lowest local score S_lowest (i) among all the k objects in L.

ICS-FORTH, Technical Report 407, July 2010

8

If the object Oj does not occur in the list of peer i then Sij= 0. Then peer i sends the

list of local objects whose values are greater than or equal to Ti, where

Ti=max(S_lowest(i),T), to the collector super-peer. If a score for an object of a

specified peer has been sent in previous phase there is no need for the peer to send

it again.

 Consequently, at peer1 the lowest local score is 11 and it is coming both from

object O3 and O5. At peer2 the lowest local score is 26 (object O3), whereas at

peer3 the lowest local score is 14 (object O5). For peer1, T1=11 so it sends objects

(O5, O3) to SP1 with their scores, as long as (O4, O2) have been sent in

phase1and as soon as these values are greater than Ti. For peer2 T2=26, so it

sends objects (O18, O3) with their scores as long as (O5, O1) have been sent in

previous phase. For peer3 there is no need for sending any pairs since T3=14 and

to SP1 the pairs (O3, 30), (O5, 14) had been sent earlier in phase1.

 Fig. 1. Transferred data in Phase 1 Fig. 2. Transferred data in Phase 2

 Now the super-peer calculates the partial sums for all the objects seen so far, and

identifies the objects with the k highest partial sums. The kth highest partial sum

called “phase-2 bottom” and is denoted by τ2. The Collector super-peer denotes

Tpatch = τ2 /m. If (Ti < Tpatch) the collector Super-peer sends these objects (with

the k-highest partial sums) as top-k objects to the originator super-peer which

returns them to the originator peer and the algorithm terminates. But if (Ti >

Tpatch), then two additional phases (Phase 3 & 4) are needed for each peer i where

the above condition is true. The Collector super-peer stores all the intermediate

results of this phase (seen objects, their scores, their partial sums).

 Thus, the partial sums for the seen objects are: Spsum(O4) = 21, Spsum(O2) = 17,

Spsum(O5) = 57, Spsum(O3) = 67, Spsum(O1) = 29, Spsum(O18) = 29. Thus, the

2 highest are Spsum(O3) and Spsum(O4) where the last is equal with τ2 since it is

the kth. Therefore Tpatch = τ2 / m = 57 / 3 = 19.For peer1 and peer3 there is no

such need for patch phase because their thresholds (T1=11, T3=14) are less than

Tpatch. For peer 2 we need to execute a patch phase since T2 =26 >19.

 In Phase 3 which is not always necessary, the Collector super-peer sends Tpatch to

peer i as the threshold and asks for all objects whose scores are no less than Tpatch

to be sent. Now the super-peer calculates the partial sums for all the objects seen so

far, and identifies the objects with the k highest partial sums. The kth highest

partial sum called “phase-3 bottom” and is denoted by τ3 threshold.

Peer1 Phase 1 Peer2 Peer3

(O4,21) (O2,17)

(O1,29)
(O5,34)

(

SP1

(O3,30)
(O5,14)

(

Peer1

Phase 2

Peer2 Peer3

SP1

L = {O5, O3}

 T=10

T1=11

T2=26

T3=14

(O5,11) (O3,11)

 (O18,29) (O3,26)

Ioannis Chrysakis, Contantinos Chalkidis and Dimitris Plexousakis

9

 Thus, SP1 requests from peer2 to send all its objects that are no less than Tpatch =

19. Thus peer2 sends {O4, O14, O16, O13} and the respective scores. The partial

sums for the current seen objects are: Spsum(O18) = 29, Spsum(O1) = 29, Spsum(O2) =

17, Spsum(O3) = 67, Spsum(O5) = 57, Spsum(O4) = 21, Spsum(O13) = 1, Spsum(O14) = 5,

Spsum(O16) = 2.

 Then the super-peer tries to prune away more objects by calculating the upper

bounds of the objects seen and have stored so far. An upper bound for an object O

(Usum(O)) is calculated by the formula: Usum(O)= S’1(O) + S’2(O), + … S’m(O),

where: S‟i(O) = Si(O) if O has been reported by peer i; S‟i(O) = min(Ti, Tpatch)

otherwise. Then the super-peer removes any object Oj from the candidate set whose

upper bound is less than τ3 and returns the top-k candidate set.

 In the example, SP1 calculate the upper bounds for all seen objects: S’(O18) = 54,

S’(O1) = 54, S’(O2) = 50, S’(O3) = 67, S’(O5) = 57, S’(O4) = 44, S’(13) = 26,

S’(14) = 30, S’(16) = 27. So, SP1 prunes O18, O1, O2, O4, O13, O14, O16 objects

from the top-k candidate set, since their upper bounds are less than τ3 = 57.

 The Phase 4 is necessary in the case when we have run phase 3: Since the

Collector super-peer stores the intermediate results in this phase it just calculates

the real scores for the top-k candidate set as it has been returned from the previous

phase and then identifies the exact top-k objects. Finally it sends the top-k objects

to the originator super-peer which returns them to the originator peer.

 In the example, since the top-k candidate set from phase 3 contains exactly k=2

objects there is no need to calculate the real scores for these objects to determine

the highest ones, so SP1 which is the Originator super-peer returns O3 and O5 to

peer1 (Originator peer) as top-k objects.

 Fig. 3. Transferred data in Phase 3 Fig. 4. Transferred data in Phase 4

Accordingly to this algorithm, our ad-hoc policy in HT-p2p is the following:

“When phase 1 of HT-p2p starts all the online contributor peers and their scores are

considered. When a peer leaves the p2p network later, the algorithm continues to

consider its data as they are valid despite the peer‟s offline status. However, in this

case for consistency reasons we reduce the number of available contributor peers

which is used for determining Tpatch threshold. The algorithm continues normally in

the next steps. Also, since the top-k query is routed to a set of relevant contributor

peers, if a new peer enters the p2p network during the execution of HT-p2p, it cannot

be examined until the next relevant top-k query is issued. If we would like to take into

account the new peer, the specified routing strategy should examine whether this peer

is relevant to the top-k query and in that case it should send the query to it. But this

means that in practice the top-k algorithm should restart since all the relevant

parameters would need to be recomputed (thresholds, number of relevant contributor

Peer1
Phase 4

Peer2 Peer3

SP1 Top-k Objects = {O5,O3}

Peer1
Phase 3

Peer2

e

er2

Peer3

e

er3

(O4,9) (O14,5) (O16,2) (O13,1)

 < Tpatch

SP1

Patch Phase for Peer2

ICS-FORTH, Technical Report 407, July 2010

10

peers etc). Obviously this alternative policy requires more time, network bandwidth

and maybe causes situations of frequent restarting which surely constitutes an

inefficient policy.

3.5 The HT-p2p plus algorithm

The HT-p2p plus is a distributed version of the HT-p2p. Having in mind that each

super-peer may have under its cluster many thousands of peers, it is desirable for

performance and scalability reasons to host one running instance of HT-p2p at each

relevant super-peer which is executed independently of each other and in a distributed

way. So instead of assigning all the set of peers to a single super-peer we use multiple

super-peers and each one applies the HTp2p only to the peers for which he is

responsible for. Then the results from all super peers are combined to determine the

final top-k objects. It is not necessary for all super-peers to perform the same number

of steps during the execution of HTp2p but the final phase cannot begin until all the

Super-Peers have calculate their final top-k items.

In HT-p2p plus, an additional role is defined, namely that of Contributor super-

peer, which contributes to the final top-k results by applying a running instance of

HT-p2p across its relevant peers. In general, once a routing strategy has returned the

set of ranked objects of relevant (contributor) peers for each corresponding

(contributor) super-peer, an instance of HT-p2p plus is ready to run. If the Originator

super-peer has the role of Contributor super-peer as well, then we select to give it the

additional role of Collector. Otherwise, a Collector super-peer can be any of the

Contributor super-peers. The role of Collector super-peer in HT-p2p plus is to collect

all top-k results from the running instances of HT-p2p plus, combine them and return

them to the Originator super-peer.

The processing steps of HT-p2p plus are the same with HTp2p for each

independent running instance. So each group of super-peer and peers will execute the

HT-p2p algorithm until the point that the top-k results have been calculated in the

Super-Peer. After that instead of returning the results to the peer the initiated the

query, each Contributor super-peer will start communicate with the Collector super-

peer for the last phase. This last phase is required for the combination of the results

from the contributors‟ super peers. In this phase only the super peers are required to

exchange messages. At the end of Phase 4, the collector super-peer has to combine

the results from all the contributor super peers. The processing steps of phase 5 are

the following.

 Each contributor super-peer sends its top-k objects to the Collector super-peer.

The Collector super-peer combines all these objects and creates a list with

discrete objects (L1).

 The collector super-peer sends this list to all the Contributor super-peers and asks

the scores for these objects. When, all super-peers answer he calculates and stores

the scores for all objects in L1 and identifies the objects with the k highest sums

.The kth highest sum will be called “phase 5 bottom” (τ5).

Ioannis Chrysakis, Contantinos Chalkidis and Dimitris Plexousakis

11

 The collector super-peer sets a threshold for phase-5 (where z is

the number of the contributor super-peers) and announces (with a broadcast) this

threshold to all the contributor super-peers.

 Then each contributor super-peer sends to the Collector super-peer the objects

(and their scores) with scores greater than so a new list with discrete

objects can be created (L2) and stored.

 The final top-k objects will be calculated from the set L3= {L1 ∩ L2}. The

collector super-peer has stored all the information for the objects in this list and

in the previous steps and there is no need for further communication actions.

After this point the Collector super-peer has identified the final top-k objects and

can return them to the peer that initiated the query. It is important that during the

merging of the results from the Contributor super-peers we will not conclude to

incorrect results. The correctness of HT-p2p and HT-p2p plus is based on the native

proof of [5]. However, the following paragraph explains why the steps of phase 5

should always return a correct candidate set of objects.

Lemma 1

Phase 5 will include in the final candidate set any Object with score high enough

to be a top-k object even if it is not present in the initial L1 list.

Proof:

Assume that we have z in number super-peers and is the phase 5 bottom. Also

we assume that A1, A2 ,A3,.....,Az are the kth scores from each super peer (each score

can belong to a different Object). It is possible that there will be an object with scores

O1 < A1, O2 <A2, O3 <A3 ... but with total score=O1+O2+...+Oz greater than Ab. We

will show that the algorithm will include this object in the final candidate top-k set of

objects.

Assume that O has final scores O1 < A1, O2 < A2 …, Oz<Az in each Super Peer.

Assume also, that the sum O1+ O2 +O3+…+Oz > (1) can be expressed as a sum

of z in number of .So (1) is equivalent

with . So at least one the final scores

O1,,..Oz has to be greater than (if > Oi for each Super Peer then

will be greater than the sum of final scores O1+ O2 +O3+…+Oz and we assumed it is

not (1)). So since we have at least one score Oi which is greater than the

algorithm will include it in the final set.

Lemma 2

Any object left out of the candidate set cannot be a TOP-K object

Proof:

Assume z in number super-peers for an object O which is not included to the final

candidate set must be:

ICS-FORTH, Technical Report 407, July 2010

12

 . (1)

So meaning that

TotalScoreForObject(O) < phase 5 bottom (2).

But, always: phase 5 bottom The final k highest score (3). From (2) and (3) we

conclude that O is not a top-k object.

4 Evaluation

4.1 Evaluation of algorithms in p2p networks.

The evaluation of data-centric algorithms like top-k threshold query processing

algorithms could be done either by implementing all algorithms upon a network

platform or by using a network simulator. One of the most famous and widely used

network platforms is JXTA [18]. It provides a common set of open protocols and an

open source reference implementation for developing general purpose, interoperable

and large scale P2P applications. However by using JXTA the supported scalability of

peers is limited to less than 50 peers with the use of evaluation techniques like [13]. In

any case, it is obvious that we need a more powerful and flexible tool in order to run

our algorithms simultaneously upon large-scale p2p networks, to draw safe

conclusions. This could be done by simulating all these algorithms which is far more

efficient and less costly than actual implementations and without the need strong

computational power. A variety of simulators can be found in the literature or in the

web for the evaluation of algorithms in p2p networks; each of them has been designed

for specific purposes [19]. In fact the majority of network simulators belong to

network-oriented or designed for specific needs .Especially for top-k threshold query

processing algorithms we conclude that the four simulators PlanetSim [20]

,Overlayweaver [21], PeerSim [22] and P2psim [23] seem to adapt in our case, so we

evaluate them based on the following criteria:

 Architecture. It is related to the design and the functionality of the

simulator. In other words it is the way the features have been implemented.

 Usability. Refers to how convenient the simulator is to use and understand.

This is closely related with the documentation, API and the activity of the

corresponding community support.

 Scalability. Refers to how many nodes can be supported and how the

simulator scales when the nodes are increasing.

 Ability to host applications in nodes. This means that we could run any

algorithm in each node with a few adaptations, instead of rewriting all

algorithms to simulator API and language.

 Statistics. The ability to gather the results and produce statistics for our

experiments. More specifically, the measured bandwidth over the network,

the numbers of messages send from each node and total execution times are

the most desired features for monitoring algorithms.

Ioannis Chrysakis, Contantinos Chalkidis and Dimitris Plexousakis

13

Table 4. Evaluation of p2p simulators

Simulator Architecture Usability Scalability

 #peers

Host

applications

Statistics

P2PSim Discrete-event
for structured

P2P networks

Poor
documentation

3000 Yes (C++) Limited set
of statistics

Overlay

Weaver

Distributed

Emulation

Good API but

very poor

documentation

150000 Yes (Java) N/A

PlanetSim Discrete-event

simulation,
distinct

separation of

services and
overlay

Good tutorials

,Very good
API and

documentation

100000 Yes (Java) Supports

Statistics &
Visualizer

PeerSim Query-Cycle or

Discrete-event

simulation

Only query-

cycle is

documented

10^6

N/A Requires

implementa

tion of
components

Our study leads us to the selection of PlanetSim [20] simulator although the

majority of these algorithms could not support fully simultaneous distributed routing

of messages. The PlanetSim‟s architecture (see figure 5 below) comprises three main

extension layers constructed one on top of another. Applications are built in the upper

layer using the standard Common API facade. This facade is built on the routing

services offered by the underlying overlay layer. Besides, the overlay layer obtains

proximity information to other nodes asking information to the Network layer. The

Simulator dictates the overall life cycle of the framework by calling the appropriate

methods in the overlay's Node and obtaining routing information to dispatch

messages through the Network.

Fig. 5. The PlanetSim‟s Core Architecture

4.2 Evaluation Setup

The goal of this evaluation is to demonstrate each algorithm's behavior, under

various circumstances which would be of important significance as top-k query

ICS-FORTH, Technical Report 407, July 2010

14

algorithms are highly important in modern p2p systems. The three main aspects that

were used for the evaluation of each algorithm were the following: The bandwidth

usage, the total (execution) time and the number of objects accessed (seen objects).

The network and time factors are used for the quantitative evaluation, while the

objects factor is used for qualitative evaluation. Each of the above was observed with

the following criteria under consideration: the number of peers in the network, the

number of objects located on each peer and the distribution that the score objects

follow among the peers. We also measured the time in which the “Super-Peer” needs

to store and process the results which receive from the peers in each phase. We named

this unit calculation time.

Some previous works have assumed that the ranked data following a uniform

distribution across the nodes. However this is not realistic enough, so more datasets

are needed in order to carefully evaluate each algorithm. Also little research has been

done around the scalability of the algorithms when the number of nodes is increasing.

For our experiments we generated 3 types of datasets that follow normal, uniform and

zipfian distributions for a large number of peers, using the libraries of [24]. Also we

collected manually some real datasets from imdb.com [25] as it contains rankings

from real users to real objects (movies). We spread the scores of highly ranked

movies across peers and we make the IMDB spread dataset. In this dataset all peers

contain unique and different (Object, Score) pairs following horizontal data

partitioning. In all other datasets, as well, we produced synthetic data to evaluate

cases where data were too or less similar among peers by using the random walk

model. Thus each score at each peer i is s[i] = S[i-1] + C, where C is a constant. For

all experiments Planetsim version 3.0 was used as the simulation tool. For all

simulated networks CHORD overlay [26] was used. The simulation was performed

on a Pentium® 4 3.0GHZ 3.0GHZ with 1.5GB of RAM. The Java version was

1.6.0_10 under WINDOWS XP SP3. For each experiment the computer was in safe

mode. Each time presented in the experiments, is the average time from 5 runs. Also,

in all experiments the top-10 items were asked from each algorithm.

4.2 Experiments

4.2.1. Evaluating bandwidth consumption.

The intention of the first experiment was to compare threshold algorithms in

terms of bandwidth consumption. As we talk about an algorithm that process online

data across the network it is crucial to study this parameter which affects the general

efficiency of the whole top-k query processing technique. Surely since the top-k

threshold algorithms transfer messages which include (Object_id, Score) pairs and

some control information, this means that we don’t expect too large bandwidth

consumption. On the other hand our intention is to compare all the relative algorithms

of this family to check from this aspect their scalability and efficiency.

Thus, we measured for a given set of peers, the size of transferred messages each

algorithm uses until it returns the final results. We tested HT-p2p, TPUT, Naive

algorithm and the HT-p2p plus for different cases of peers per Super-Peers. We

marked as HT-p2p plus BEST, the case in which the HT-p2p plus algorithm exhibits

Ioannis Chrysakis, Contantinos Chalkidis and Dimitris Plexousakis

15

the best behaviour while HT-p2p WORST is the corresponding worst case against the

tested cases. All datasets lead us to the similar conclusions about the network

performance of threshold algorithms in top-k query processing.

We present the results of three datasets, the zipfian dataset {A=1, range of scores

from one to 500}, uniform {n=150 values, range= (1, 500)} and the IMDB real

synthetic dataset. In the first and the second case we had a maximum of 75000 objects

(150 objects per contributor peer) across 500 peers, where in the second we had

100000 objects (250 objects per contributor peer) across 400 peers. Our first

observation could be clearly that the values between BEST and WORST case were

close enough. Figures 6, 8, 10 and table 5, 6, 7 below present these results. We also

present the different running cases of HT-p2p plus according to the network topology.

(see figures 7, 9, 11) For example, 4x5 in topology means that we had 4 contributor

Super-Peers and 5 contributor peers running the algorithm.

From this kind of experiments, we can draw four main conclusions. Firstly, HT-

p2p plus exhibits in most cases the best bandwidth performance. The differences

between the HT-p2p-plus BEST and WORST were negligible. Secondly, the TPUT

algorithm in all cases transferred more bytes than the naive algorithm. In general HT-

p2p plus and HT-p2p manage to reduce the bandwidth considerably. Specifically in

all datasets for HT-p2p and HT-p2p plus algorithm we got about 100-497 % and 160-

545 % less bandwidth consumption as compared with Naive and TPUT threshold

algorithm respectively. For zipfian and uniform distributions the results were similar,

but we measured sharper increases for HT-p2p plus algorithm, while in some cases

of real “synthetic” data (IMDB), HT-p2p was better in bandwidth consumption. It is

worth noting that when the HT-p2p plus BEST was second after HT-p2p, both

algorithms were close enough. So, we can conclude that HT-p2p plus is in general the

most economic for bandwidth usage.

Our last but not least conclusion about HT-p2p plus and the different running cases

is that for zipfian and uniform data distribution the more super-peers we used the less

bytes transferred. In these cases the algorithm finished in two running phases. Is is

noteworthy that all best cases for this kind of data were identical. But for IMDB data,

where we noticed some patch phases (i.e two additional communication phases

required for each running instance of Contributor Super-Peer) we could not claim the

same argument as we got different values for best and worst cases for different

datasets of HT-p2p plus. Consequently the network structure affects clearly the

bandwidth consumption only if we run the standard phases of the algorithm. Maybe

more experiments with different simulators or collected datasets are required to draw

a safer conclusion about the cases when patch phases are necessary.

ICS-FORTH, Technical Report 407, July 2010

16

Fig. 6 Total number of transferred bytes for zipfian dataset

Table 5. Transferred Bytes for Zipfian Dataset

Peers
HT-

p2p
TPUT Naive

HT-p2p

BEST /

Topology

HT-p2p

WORST

/

Topology

20 12246 37147 27329
10644
/4x5

11157

/2x10

50 33855 98063 68282
27898

/5x10

32304

/2x25

100 72123 201860 136554
55662

/10x10

67397

/2x50

200 146178 406095 273122
110820

/20x10

139926

/2x100

400 304448 826644 546352
260519

/10x40

278563

/4x100

500 380283 1032800 682873
264833

/100x5

349610

/5x100

Ioannis Chrysakis, Contantinos Chalkidis and Dimitris Plexousakis

17

Fig. 7 HT-p2p plus cases for zipfian dataset

Fig. 8 Total number of transferred bytes

Table 6. Transferred Bytes for Uniform Dataset

Peers
HT-

p2p
TPUT Naive

HT-p2p

BEST /

Topology

HT-p2p

WORST /

Topology

20 27511 44024 30205 27563 /4x5 28013 /2x10

50 73477 121243 75525 68871 /5x10 71137 /2x25

100 146915 261702 151026 137579/10x10 146091 /2x50

200
297204

541151 302032 283504/20x10 296797/2x100

400 595946 1155606 603904 578282/10x40 590383 /5x80

500 750497 1500936 754899 674330/100x5 740945/5x100

ICS-FORTH, Technical Report 407, July 2010

18

Fig. 9 HT-p2p plus cases for uniform dataset

Fig. 10 HT-p2p for IMDB dataset

Fig. 11 HT-p2p plus cases for IMDB synthetic dataset

Ioannis Chrysakis, Contantinos Chalkidis and Dimitris Plexousakis

19

Table 7. Transferred Bytes for IMDB Synthetic Dataset

Peers
HT-

p2p
TPUT Naive

HT-p2p

BEST /

Topology

HT-p2p

WORST

/

Topology

20 20077 80755 74165
19994

/ 4x5

20012

/ 2x10

50 43222 235767 214902
 56472

/2x25

72645

/ 5x10

100 151228 505026 460039
166022

/10x10

175159

/5x20

200 313251 1070057 976104
328924

/2x100

358702

/10x20

400 771749 2223911 2039857
762621

/4x100

767427

/ 5x80

4.2.2. Evaluating execution time performance.

In the second experiment we measured the execution time each algorithm takes to

return the final top-k results. In this experiment we measured the total time each

algorithm takes to return the final top-k results and the clear processing time which is

the calculation time. In fact the calculation time, is the time the Super-Peer(s) spend

on sorting-calculating- “processing” the items-scores, that receives from the peers.

Here we should make an important note about PlanetSim simulator. It cannot

support a fully distributed message mechanism at Super-Peers and it is based on a

random network topology. This means that it is not fair enough to compare HT-plus

with the others who only need just one Super-Peer. On the contrary, it is noteworthy

that the HT-plus BEST is better in execution time than TPUT and not far from the

HT-p2p which is the optimal. The low calculation times at each Super-Peer and this

limitation of the simulator give us the opportunity to claim that a new fully distributed

version of the simulator could bring HT-p2p plus (BEST) on the first position. We

present in this subsection representative results of the real IMDB datasets and the

zipfian dataset in figure 12 and 13 respectively. The main difference besides these

cases is that in the first case the HT-p2p algorithm needs mostly some patch phases to

complete its execution, while in zipfian dataset in all cases it the results returned just

in two phases of the algorithm. This could explain firstly the large differences at times

for the same size of peers. Especially, for IMDB dataset the sorted order of time-

efficiency is: {Naive, HT-p2p, HT-p2p BEST, HT-p2p WORST, TPUT} in all cases of

peers. But for zipfian datasets the order for 20, 50,100,200,400 and 500 peers was not

the same:

 {Naive, HT-p2p BEST, HT-p2p, TPUT, HT-p2p WORST}

 {Naive, HT-p2p BEST, HT-p2p, HT-p2p WORST, TPUT}

 {Naive, HT-p2p, HT-p2p BEST, HT-p2p WORST, TPUT}

 {Naive, HT-p2p, HT-p2p BEST, TPUT, HT-p2p WORST}

 {Naive, HT-p2p, HT-p2p BEST, TPUT, HT-p2p WORST}

ICS-FORTH, Technical Report 407, July 2010

20

As we could see in the first two cases the distributed HT-p2p BEST finished before

HT-p2p while in the last two phases the HT-p2p WORST presented the worst of

behaviour on time performance. In these worst cases the number of Contributor

Super-Peers was much greater than the contributor peers (50x8 and 100x5).

Fig. 12 Total time of execution in seconds for IMDB dataset

Fig. 13 Total execution time in sec for zipfian dataset (no any patch phase appeared)

As comparing total execution time against calculation time in HT-p2p plus we could

say clearly that most of the time is spent in sending/receiving messages, which could

Ioannis Chrysakis, Contantinos Chalkidis and Dimitris Plexousakis

21

be caused by the simulator (see figure 14 and table 8 below). In this figure which

corresponds to the case when we had the maximum number of Super-Peers for zipfian

dataset, the percentage of calculation time through the total time is varying from 5.7

% to 18.9%, which is the worst case for calculation time. It is noteworthy that as we

the size of participating peers increases the calculation time falls dramatically in most

of the cases. Thus, the distributed nature of HT-p2p proved to share the calculation

cost among peers due to load balancing at contributor Super-Peers. In table 9

suggestively, we can view the specific results of the representable HT-p2p plus best

case 4x100 of calculation times at each Super-Peer using IMDB real synthetic data. It

is clear that at this experiment the calculation time is taking just the 1% of the total

time. But this rate in other datasets (zipfian, normal, IMDB spread) can take up to

18.9 % of the total time.

Fig. 14 Calculation vs. total execution time for zipfian dataset for HT-p2p plus

Table 8. Calculation time of execution in seconds for zipfian dataset in HT-p2p plus

Peers 20 50 100 200 400 500

HT-p2p

plus

Calculation

Time 0,0801 0,178 0,330 0,688 1,620 2,825

HT-p2p

plus Total

Time 0,4224 1,031 2,268 6,559 26,209 49,180

Used

Super-

Peers 4 5 10 20 50 100

Percentage
of

Calculation

Usage 18,966 17,3 14,55 10,48 6,18 5,74

ICS-FORTH, Technical Report 407, July 2010

22

Table 9. Calculation Times of 4x100 case for HT-p2p plus BEST using IMDB data

Super-Peer ID
Calculation Time

(sec)

1 0,122

2 0,1652

3 0,1196

4 0,1108

Total Calculation/ Full Execution

Time (s)
0,6262 / 62,196

Four main conclusions could arise from this experiment. Firstly, the naive case

proved to be optimal for all datasets, two or three times faster than HT-p2p. Surely for

this result we should take into account two things. The first has to do with the

Planetsim limitation of distributed running and the other has to do that the naive

algorithm presented the maximal bandwidth consumption which is not surely

preferable. Secondly for both HT-p2p and plus, up to 200 peers, we have a linear

increase in total execution time which becomes sharper if we increase the number of

contributor peers to 400 or 500. Thirdly, due to the nature of the simulator HT-p2p

needs the least time to return the final results, but, most of the times HT-p2p plus, due

to load balancing, needs fewer time to process the scores. Finally TPUT appears to

need more than 300% more time than HT-p2p and HT-p2p plus. The trade-off

between time and network consumption arises clearly from this experiment.

4.2.3. Accessed objects – Seen Objects.

We also checked in the third experiment how many objects were accessed from

databases to retrieve their scores termed as the seen objects. We check substantially

HT-p2p vs. TPUT with this qualitative characteristic as soon as the HT-p2p plus

presents the same behaviour with the HT-p2p while naive case includes the maximum

number of objects. We noticed that all basic threshold algorithms (HT-p2p, TPUT)

access the more than 80% of the objects for all 0datasets. In some cases HT-p2p and

TPUT had the ideal behaviour (IMDB spread dataset, see figure 15) but in other

datasets HT-p2p is better (IMDB synthetic, normal, zipfian), see fig.16. TPUT

presented the better behaviour when we had the maximum number of scores per peer

(1000 items) for normal or uniform data distribution. The latter corresponds to the

best case for TPUT (see figure 17), something which was expected as soon as it is

designed for this kind of scoring distributions. But, in most of the other cases TPUT

has the maximum number of seen objects which is identical to the naive algorithm.

When we used synthetic and similar enough datasets the seen objects were reduced

dramatically for HT-p2p and HT-p2p plus. Thus for the normal synthetic case the HT-

p2p algorithm examined as seen objects the actual top-10 ones. From the other hand

in this case TPUT examined all the items which is identical to the naïve case. The

general conclusion here is that for similar synthetic data HT-p2p has the best

Ioannis Chrysakis, Contantinos Chalkidis and Dimitris Plexousakis

23

behaviour. On the other hand, the high rates in seen objects is a topic for further study

and discussion to discover maybe more advanced methods for defining thresholds

maybe by using specified peer thresholds instead of global thresholds with techniques

such as the ones of [10].

Fig. 15 Seen objects for IMDB spread dataset

Fig. 16 Seen objects for various synthetic datasets

ICS-FORTH, Technical Report 407, July 2010

24

Fig. 17 Seen objects for various distribution datasets

5 Conclusion and Discussion

Top-k query processing is a of fundamental primary importance cornerstone for an

effective search in distributed networks which is crucial for p2p applications such as

digital libraries, social communities, preference queries over product catalogs, file

sharing, sensor network monitoring, web logs analysis etc. Exact threshold-based top-

k algorithms could be the solution for searching in modern p2p applications that

maintain ranked data or take as input ranked data accordingly to their needs. The new

extended versions of HT, HT-p2p and HT-p2p plus presented promising results in

terms of bandwidth consumption which is the most crucial parameter as the size of

p2p networks increases daily.

However, there are some points which need to be studied further in order to

improve the time performance of threshold-based algorithms. Thus we could use

heuristics to detect very large or low scores which could cause the recalculation of

intermediate thresholds and to adapt relatively accordingly to our global thresholds. In

addition, we could use different thresholds for each peer using techniques like these in

[10] instead of global thresholds. As well, some further extensibility suggestions to

the direction of speed improvement could be the caching of top-k results in order to

return immediately the questions that have been answered in the early recent past or

the application of timeout techniques for slow contributor peers or for delayed

contributor super-peers. The last suggestion could enhance especially the switching

from HT-p2p plus to HT-p2p to archive the speed up of the whole aggregation

process.

Some other topics of discussion could be the definition of some criteria to define

each time which peer could play the role of super-peer: accordingly to the

computational power, to the network distance and topology, the possible network

failures etc. The last constitutes to an important related problem of peer failures

Ioannis Chrysakis, Contantinos Chalkidis and Dimitris Plexousakis

25

during query execution. A solution to this problem can be found in [27], where a re-

organization step for the affected portion of the query execution plan could be applied

in each network failure. Also we could use of the notion of k-redundant Super-Peer

which was introduced in [28]. A super-peer is k-redundant if there are k nodes sharing

the super-peer load, forming a single “virtual” super-peer. Every peer in the virtual

super-peer is a partner with equal responsibilities: each partner is connected to every

client and has a full index of the clients’ data, as well as the data of other partners.

Peers send queries to each partner in a round-robin fashion; similarly, incoming

queries from neighbours are distributed across partners equally. Hence, the query load

on each partner is a factor of k less than on a single Super-Peer with no redundancy.

Therefore, a k-redundant Super-Peer has much greater availability and reliability than

a single super-peer and could be used to solve the specific problem of failure.

Apart from these extensibility suggestions our plans for the future include the

comparison of the HT-plus in a new fully- distributed simulation platform to evaluate

more precisely its behaviour with time. Also, we plan to study firstly the support top-

k join queries and secondly the support of non- monotonic aggregation functions in

order to enrich our query capabilities. These characteristics could give to the future

peer data management systems the ability to of answering more complex queries and

fulfilling more advanced user demands.

References

1. Fagin R.: Combining fuzzy information from multiple systems. In Proceedings of

the 15th ACM Symposium on Principles of Database Systems, Montreal, (1996)

2. Chaudhuri, S., Gravano, L.: Evaluating top-k selection queries. In Proceedings of

the 25th International Conference on Very Large Data Bases (VLDB'99), (1999)

3. Fagin R. et. Al.: Optimal Aggregation Algorithms for Middleware. In

Proceedings of the 20
th

 PODS (2001)

4. Hayek, R., Raschia, G, Valduriez P., Mouaddib, N.,: Data Sharing in P2P Systems

(2010)

5. Yu, H., Li, H., Wu, P., Agrawal, D., Abbadi, A. E.: Efficient Processing of

Distributed Top-k Queries. In Proceedings of the 16
th

 DEXA (2005)

6. Cao, P., Wang Z.: Efficient Top-k Query Calculation in Distributed Networks. In

Proceedings of the 23
rd

 PODC (2004)

7. Michel, S., Triantafillou, P., Weikum, G.: Klee: A Framework for Distributed

Top-k Query Algorithms. In Proceedings of the 31
st
 VLDB (2005)

8. Nejdl, W., Siberski W., Thaden U., Balke W-T.: Top-k Query Evaluation for

Schema-Based Peer-to-Peer Networks. In Proceedings of the 3
rd

 ISWC (2004)

9. Balke, W-T., Nejdl, W., Siberski W., Thaden, U.: Progressive Distributed Top-k

Retrieval in Peer-to-Peer Networks. In Proceedings of the 21
st
 ICDE (2005)

10. Neumann, T., Bender, M., Michel, S., Schenkel, R., Triantafillou, P.,Weikum, G.:

Optimizing distributed top-k queries. In Proceedings of the WISE „08 (2008)

11. Neumann, T., Bender, M., Michel, S., Schenkel, R., Triantafillou, P.,Weikum, G.:

Distributed top-k aggregation queries at large. Journal of “Distributed Parallel

Databases „09”, 26:3-27 (2009).

ICS-FORTH, Technical Report 407, July 2010

26

12. Xu, Y., Ishikawa, Y., Guan, G.: Effective Top-k Keyword Search in Relational

Databases Considering Query Semantics. In Proceeding of the Asia-Pacific Web

Conference (APWeb) and Web-Age Information Management (WAIM) „09

(2009)

13. Chrysakis, I., Plexousakis D.: Semantic Query Routing and Distributed Top-k

Query Processing in P2P Networks. Technical Report. TR-387, ICS-FORTH,

Greece (2006)

14. Tempich, C., Staab, S., Wranik, A.: REMINDIN': Semantic query routing in

peer-to-peer networks based on social metaphors. In Proceedings of the 13th

International WWW Conference, (2004)

15. Nejdl, W., Wolpers, M., WSiberski, W., Löser, A., Bruckhorst, I., Schlosser, M.,

Schmitz. C.: Super-Peer-Based Routing and Clustering Strategies for RDF-Based

Peer-To-Peer Networks. In Proceedings of the 12th International WWW

Conference (2003).

16. Hill, B.: A Lattice Framework for Reusing Top-k Query Results. In Proceeding of

the IRI Conf. (2005)

17. Crespo, A., Garcia-Molina H.: Semantic Overlay Networks, for P2P Systems.

Technical Report. Stanford University, USA (2003)

18. The JXTA Platform http://www.jxta.org/

19. S.Naicken, B.Livingston, A.Basu,S.Rodhetbhai, I.Wakeman, D.Chalmers.: The

State of Peer-toPeer Simulators and Simulations. ACM SIGCOMM Computer

Communication Review ,Volume 37, Number 2, April (2007)

20. The PlanetSim Simulator. http://planet.urv.es/trac/planetsim/

21. The Overlayweaver Simulator. http://overlayweaver.sourceforge.net/

22. The PeerSim Simulator. http://peersim.sourceforge.net/

23. The P2psim Simulator. http://pdos.csail.mit.edu/p2psim/

24. The SSFNET. http://www.ssfnet.org/javadoc/

25. The Internet Movie Database. http://www.imdb.com/

26. The Chord Project. http://pdos.csail.mit.edu/chord/

27. Akbarinia, R., Pacitti, E., Valduriez, P.: Reducing Network Traffic In

Unstructured P2P Systems Using Top-k Queries. Distributed Parallel Databases

19(2–3), 67–86 (2006)

28. Yang, B., Garcia-Molina, H.: Designing A Super-peer network. In Proceedings of

the 19th International Conference on Data Engineering (2003)

