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Abstract. Ranking queries, also known as top-k queries, have drawn 

considerable attention due to their usability in various applications. Several 

algorithms have been proposed for the evaluation of top-k queries. A large 

percentage of them follow the Threshold Approach. In p2p networks, top-k 

query processing can provide a lot of advantages both in time and bandwidth 

consumption. We focus on the main adaptations of threshold algorithms 

fulfilling the requirements of modern p2p applications. We introduce two 

algorithms optimized for ranking queries in p2p networks and present their 

characteristics. In the setting of a simulation of large p2p networks, we evaluate 

the performance of Threshold Algorithms. Our experiments demonstrate that in 

some cases a threshold algorithm can improve top-k query processing, while in 

others it is far more costly. The results show that distributed query processing 

can be more effective than a simple threshold algorithm in a p2p network. 

Keywords: Top-k queries, query processing, peer-to-peer networks, 

distributed search and systems. 

1   Introduction 

With the amount of available data growing rapidly in various contexts, applications 

and scenarios, the need for answering queries effectively is increasing dramatically as 

well. The use of ranking queries provides a solution to the problem of effective 

search. It was first used for relational databases [1], [2], or standalone applications 

[3], but it can be also used for distributed applications like peer data management 

systems, which manipulate a huge amount of data while sharing information across 

peers [4]. Ranking queries, also known as top-k queries, produce results that are 

ordered on some computed score. A top-k query over defined subsystems returns the 

objects with the k-highest aggregated scores under a monotonic function. Rank-aware 

query processing has become a vital need for many applications, especially in modern 

large-scale distributed applications as top-k queries enable fast, reliable and ad-hoc 

filtering of results. In this work, we study the problem of answering top-k queries 

over p2p networks under the general assumption that each peer maintains its own 

ranked data. The naïve solution to process a top-k query is to ask all peers to send 

their scores to the query originator, which merges all the results and returns the top-k 
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ones. However, an efficient top-k algorithm should return the highest k results by 

limiting the messages transferred across peers, without examining all scores in a fixed 

number of rounds.  

Taking into account the p2p context and these characteristics we seek efficient 

ways to answer global top-k queries that are issued in the underlying network. We 

focus mainly on the promising Threshold-based techniques in order to retrieve the 

highest ranked results. This family of algorithms promises standard phases of 

termination which means limited transferred bytes and fast query answering, exact 

matching of results, easy setup and use as soon as peers have their data ranked 

according to the specified criteria. These data could be manipulated explicitly by 

peers (e.g. as in recommendation systems) where each user ranks its objects, or could 

be gathered by peers who receive information according to the context (e.g. in 

network monitoring, sensor networks, community mining). However, to the best of 

our knowledge, these algorithms have not been evaluated yet in p2p networks and it is 

not obvious whether they can be effectively used. From this family of algorithms, we 

take as a base a most promising algorithm called Hybrid Threshold (HT) [5] and 

adapt it to a p2p network structured according to a super-peer topology.  

The contributions of this report are threefold. Firstly, it presents the evaluation of 

exact threshold algorithms in large scale p2p networks with different data 

distributions across nodes. In fact, both original HT [5] and TPUT [6] algorithms have 

been tested only as standalone applications (in one host computer, with native java 

simulation) for maximum numbers of 100 and 128 nodes respectively and without 

regarding execution times. Also TPUT assumes that all the scores are following only 

the uniform distribution which is not realistic. Additionally, there is no study directly 

comparing HT and TPUT neither in centralized nor in distributed settings. Secondly, 

this report presents two extended versions of the HT algorithm which could be 

applied for peers that host various kinds of data in any p2p network which could 

support a super-peer topology for top-k query answering.  Finally, the results of this 

study provide useful conclusions regarding the applicability of threshold techniques 

for current or future p2p data management applications.  

The rest of the report is organized as follows. In section 2 we present the state of 

the art threshold-based algorithms suitable for answering top-k queries in distributed 

environments. We analyse their main advantages and compare them by extracting 

their qualitative characteristics. Also, we briefly mention the related algorithms which 

don’t belong to this category of algorithms, some related research fields and problems 

and finally some recent approaches in the area of top-k query processing. In section 3 

we present the general problem statement and our suggestions for the adaptation of 

previous threshold algorithms to p2p context. Then we present two extended versions 

of the Hybrid Threshold algorithm called HT-p2p and HT-p2p plus. The former is 

presented step by step with a simple example, while for the latter a proof of 

correctness is presented. In section 4 a detailed evaluation of top-k threshold 

techniques is presented including our new extended versions and in various scenarios 

in order to ascertain their efficiency. Section 5 presents our conclusions and some 

thoughts for discussion. 
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2   Background and Related Work 

The most prominent work in top-k query processing has been defined by the 

seminal approach of Fagin et al. on the Threshold Algorithm (TA) [3] which was 

designed for standalone database applications. But especially for p2p applications, TA 

seems insufficient since it requires several round-trips to return the results because it 

doesn‟t take data distributions into account. These characteristics cause TA to have 

unpredictable time and network consumption with a lot of messages transferred for 

each round-trip across the network, which constitutes a poor query answering 

performance. To the direction of TA adjustment for distributed networks, four 

algorithms TPUT [6] and {TPAT, TPOR, HT} [5] have been presented including 3 

basic phases and using thresholds to order to determine the final top-k set of objects. 

These algorithms seem to overcome the problems of TA, like unbounded message 

rounds and belong to the class of exact algorithms which means that they return 

exactly the real highest ranked objects without any kind of prediction. TPUT prunes 

ineligible objects based on their scores in 3 standard phases and in its evaluation 

outperforms TA in most cases [5]. TPAT does not belong to the category of exact 

algorithms since it uses statistics to further enhance the pruning power of TPUT. 

However, both TPAT and TPUT algorithm assume uniform data distribution which 

could be restrictive as, in real p2p systems some peers may host data following other 

distributions. TPOR prunes ineligible objects by their rankings (positions in sorted 

lists). The Hybrid Threshold Algorithm [5] combines the advantages of both TPUT 

and TPOR, estimates data distributions without a-priori knowledge, which means that 

it does not assume a specific distribution of scores. It is based on partial sums and 

upper bounds to prune non-eligible objects, and terminates in a fixed number of 3 + 1 

phases. Performance comparisons regarding bandwidth consumption [5] showed that 

HT outperforms the other algorithms of this family. In table 1 we summarize the 

characteristics of these algorithms that belong to threshold-based top-k query 

processing techniques.  

It is worth noting that all the above algorithms except TPAT belong to the family 

of exact algorithms, which means that they always return the highest ranked objects 

correctly without using any sense of probabilities. The latter refers to another category 

of algorithms usually termed as approximate algorithms. These algorithms are based 

on the idea that, given a top-k query, a probabilistic guarantee that “x percent of the 

retrieved objects are among the top-k objects we would get if we had asked all peers 

in the system” can be provided. The final pruning of objects under specific 

probabilistic guarantees is achieved using routing filters and histograms. The main 

limitation of this approach is that it resorts to broadcasting when the desired number 

of results is too high or, when the user asks for a high degree of accuracy (approaches 

exactly the results like exact algorithms). Moreover, all algorithms of this family are 

based on TA [3], so they need several round-trips for retrieving the final results. The 

most promising approach of this family seems to be the KLEE framework [7] which 

terminates in a fixed number of communication rounds.  

A different distributed approach is presented by Nejdl. et. al. [8, 9]. It combines 

ideas of semantic query routing based on indices and proposes a decentralized top-k 

query evaluation algorithm which is based on dynamically collected statistics put into 

local indices. However, the first time all peers have to participate in processing the 
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query. Then, several roundtrips are required for obtaining the final result. Also, in the 

case where the query is not contained in indices the algorithm needs more time and 

network bandwidth. In [10], some novel methods are presented for optimizing top-k 

aggregation queries for both exact and approximate algorithms based on choosing 

different thresholds for each peer (instead of  a global threshold at each phase). It 

would be interesting for this work to evaluate more network factors such as 

bandwidth consumption and the ad-hoc behavior of algorithms when peers join or 

leave the p2p network frequently. The same authors extended their work in a first 

attempt to compare TPUT and KLEE in either exact or approximate mode with the 

suitable adjustments [11]. The results showed that the adjusted version TPUT is 

slightly preferable than that of KLEE considering bandwidth and response time 

performance. 

Table 1. Comparison of top-k threshold query processing algorithms 

Algorithm TPUT TPAT TPOR HT 

Exact Matching of 

results 

Yes No Yes Yes 

Assumes specific 

data distribution 

Yes (uniform) No Yes (uniform) No (works 

without 

having  a-

priori 

knowledge) 

Communication 

Phases 

3 3 3 3+1 

Evaluated in p2p 

networks 

No No No No 

3   Methodology 

3.1 Motivation 

Nowadays, the p2p model is used for diverse applications and services, including 

content storage, sharing (file-sharing, content distribution, backup storage) and 

communication (voice, instant messages, multicast) to name a few. The size of data is 

increasing rapidly at peers day by day, so the problem of effective search in peer-to-

peer networks becomes more crucial than ever. This problem could be divided into 

two problems: query routing and query processing. First, we have to decide where to 

route each submitted query instead of broadcasting the query to the entire network 

which is the naïve case of routing. Secondly, we have to decide which peers should 

participate to the query processing stage. In this work we do not study the problem of 

how to route the query to relevant peers, but how we can process efficiently the query 

using top-k query processing techniques upon our ranked data.  
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3.2 Data Model and Problem Statement 

Following the query model of [5, 6] we assume that each peer maintains a list of 

pairs (O, Si(O)) where O is an object and Si(O) is the score of the corresponding 

object. From this point on, when we refer to object O we mean the Object_id of O and 

not the actual object. The algorithm manipulates (sends, receives etc.) object 

identifiers. The objects (object_ids) in each list are sorted in descending order of their 

scores. If an object does not appear in the list of a peer, its score in that list is zero by 

default. After submitting the query to relevant peers according to the specified routing 

strategy, our goal is to find the k-highest aggregated values (f(S1(O),...,Sm(O)), 

where f is a monotonic function,  which is used to compute the overall score of an 

object. We use the SUM function for ease of exposition.  The objects with the k-

highest values are denoted as top-k objects. Objects can be thought of as, e.g., RDF 

resources if peers host RDF/S data or tuples if they host relational databases. Each 

object is scored according to the selected scoring technique which in turn determines 

the applied function accordingly to the specified needs of each p2p application. For 

example we could use a weighted monotonic function for the computation of the final 

score for each object like the formula: Final Score = w1*s1 + w2*s2 + w3*s3 where 

w1, w2, w3 could be some predefined weights for each property according to the 

preferences of the user who sends the query to the system. For our algorithms all 

scores for discrete objects are taken as input to calculate the top-k set. 

All threshold algorithms are trying to use appropriate thresholds in order to prune 

some ineligible objects with low aggregated scores and return finally the top-k set of 

objects. In this report, we study the problem of answering top-k queries efficiently. 

An efficient top-k retrieval algorithm in such context should take into account first of 

all the bandwidth consumption and the execution time as a real p2p system may 

receive thousands of queries per time. Also some other characteristics need to be 

addressed, such as the ad-hoc behavior of peers, the different distributions of scores, 

the scalability and the topology of the network. A representing case of threshold 

algorithm is the HT [5] which resulted from a combination of TPAT and TPOR [5]. 

The first experiments on bandwidth consumption performance showed that HT 

outperforms TPAT, TPOR and the alternative approach of TPUT [6] as well. Thus in 

the next subsection, we try to verify whether the HT algorithm could be fully adapted 

from middleware to p2p environment emphasizing the main directions for all 

threshold algorithms. To the best of our knowledge, none of the algorithms of this 

family has been adapted and tested in p2p environment. 

3.3 Main Directions and Adaptations  

Due to the aggregation nature of top-k problem, it is obvious that a central manager 

is required (to gather the results and forward the answers), as well as, a suitable 

network topology in order to avoid flooding of network messages. A super-peer 

topology combines these issues as super-peers play the role of central managers for 

each cluster of peers for which they are responsible. One idea for this classification of 

peers could be by semantic criteria, similarly to the idea of Semantic Overlay 

Networks [17]. Thus by applying a suitable routing mechanism which determines the 
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relevant peers each super-peer should process only a subset of queries which are 

semantically matched. The problem of query routing as we mentioned before is out of 

the scope, although with techniques like [13] a query routing algorithm could be 

combined efficiently. Thus, the extended versions of HT are built upon this super-

peer topology and could be supported generally by all the threshold algorithms. 

Having in mind that peers could join or leave the network frequently, the top-k 

algorithm should first take into account this characteristic in order to define a 

consistent policy. Secondly it could store some intermediate results in order to 

enhance the whole processing technique. The HT algorithm processes the incoming 

queries on the fly and does not study the case when a peer enters or leaves the 

network during its execution. In the extended version HT-p2p we choose to save the 

intermediate results and apply a specific policy for ad-hoc peers in order to be 

consistent. The storing ability of HT-p2p helps pruning some steps of the HT basic 

algorithm. The required data for saving are limited to seen object_ids, scores, partial 

sums which means that their capacity in bytes is fairly low. On the other hand we gain 

processing cost (no need for examining again the “examined” seen objects) and 

communication cost as well (the pruning of some steps entails fewer transferred 

messages and less bandwidth consumption).  

Finally, for modeling reasons it is preferable to define discrete roles at peers for the 

HT-p2p algorithm. The peer that issues the original query across the p2p network is 

called an Originator peer. Respectively, its responsible super-peer plays the role of 

Originator super-peer. Each relevant to the query peer is called Contributor peer. A 

Collector super-peer executes the specific running instance of HT-p2p. It collects the 

intermediate results from all the contributor peers and returns them to the Originator 

super-peer. For the selection of the Collector super-peer we could take into account 

the number of Contributor peers or the number of the relevant objects. In the next 

subsections we present the extended versions of HT called HT-p2p and HT-p2p plus 

which use these terminology concepts. Before presenting analytically the extended 

versions of HT we present a brief comparison of all versions based on their main 

differences. 

Table 2. Comparison of all version of the HT algorithm 

 

Algorithm HT (Original) HT-p2p HT-p2p plus 

Network 

Topology 

Unstructured Super-Peer Super-Peer 

Storing ability 

of intermediate 

results 

No Yes Yes 

Fully 

Distributed 

No No Yes 

Evaluated in 

p2p networks 

No Yes Yes 
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3.4 The HT-p2p Algorithm Step By Step 

Let‟s assume that the Collector super-peer is SP1 and the relevant peers according 

to the routing strategy are: Peer1, Peer2, and Peer3 (m=3). These peers are the 

contributors to a sample query. Let‟s assume that the Originator peer is peer1, so SP1 

is also the Originator super-peer and we are looking for a top-2 query (k = 2). Table 1 

below depicts the (Object_id, Score) pairs at each peer of SP1. The steps performed 

by HT-p2p for the sample top-2 query are the following: 

Table 3. (Object_id, Score) pairs at each peer of SP1 

Peer1 Peer2 Peer3 

(O4, 21) (O5, 32) (O3, 30) 

(O2, 17) (O1, 29) (O5, 14) 

(O5, 11) (O18, 29) (O18, 9) 

(O3, 11) (O3, 26) (O4, 7) 

(O6, 10) (O9, 20) (O2, 1) 

(O7, 10) (O4, 9) (O8, 1) 

(O11, 8) (O14, 5)  

(O12, 6) (O16, 2)  

(O15, 6) (O13, 1)  

(O13, 4)   

 

 

 In Phase 1 each Contributor peer sends its top-k objects to the Collector super-

peer. The latter calculates the partial sums for all objects seen so far and identifies 

the objects with the k-highest partial sums. The Collector super-peer stores all 

intermediate results of this phase (seen objects, their scores, and their partial sums). 

For an object O, the partial sum Spsum(O) = S’1(O) + … + S’m(O) where  S‟i(O) = 

Si(O) if O has been reported by peer i to the Super-peer, and S‟i(O) = 0 otherwise. 

An object has been reported by a peer if it has been sent with its score to a super-

peer at least once, so it has been stored. 

 Thus, Peer1 sends its top-2 objects with its corresponding scores to SP1: (O4, 21), 

(O2, 17). Peer2 sends respectively (O5, 34), (O1, 29) to SP1 and Peer3 sends (O3, 

30), (O5, 14). Then SP1 calculates the partial sums (Spsum) for all seen objects: 

Spsum(O4) = 21, Spsum(O2) = 17, Spsum(O5) = 48, Spsum(O1) = 29, Spsum(O3) 

= 30. The k=2 highest partial sums belong to O5, O3 and their value is 46, 30 

respectively. SP1 stores all the intermediate results of this phase. 

 In Phase 2 the Collector super-peer sends the list L and the threshold T = τ1/m to 

all the Contributor peers in the p2p network, where: {L = list of the top-k object 

IDs from the partial sum list, τ1 called “phase1 bottom” = the k-th highest partial 

sum and m = the number of peers at the specified cluster of super-peer}. As per 

Phase 1, τ1 = 30 and the list L contains O5, O3. Thus SP1 broadcasts the list L = 

{O5, O3} and the threshold T =10 since it is equal to the fraction:  τ1 / m where m 

= 3. 

 Upon receiving the list L, for each object Oj in L: peer i finds its local score termed 

Sij, and determines the lowest local score S_lowest (i) among all the k objects in L. 
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If the object Oj does not occur in the list of peer i then Sij= 0. Then peer i sends the 

list of local objects whose values are greater than or equal to Ti, where 

Ti=max(S_lowest(i),T), to the collector super-peer. If a score for an object of a 

specified peer has been sent in previous phase there is no need for the peer to send 

it again. 

 Consequently, at peer1 the lowest local score is 11 and it is coming both from 

object O3 and O5. At peer2 the lowest local score is 26 (object O3), whereas at 

peer3 the lowest local score is 14 (object O5). For peer1, T1=11 so it sends objects 

(O5, O3) to SP1 with their scores, as long as (O4, O2) have been sent in 

phase1and as soon as these values are greater than Ti. For peer2 T2=26, so it 

sends objects (O18, O3) with their scores as long as (O5, O1) have been sent in 

previous phase. For peer3 there is no need for sending any pairs since T3=14 and 

to SP1 the pairs (O3, 30), (O5, 14) had been sent earlier in phase1.  

 

 

 

 

 

 

 

 

 Fig. 1. Transferred data in Phase 1         Fig. 2. Transferred data in Phase 2 

 Now the super-peer calculates the partial sums for all the objects seen so far, and 

identifies the objects with the k highest partial sums. The kth highest partial sum 

called “phase-2 bottom” and is denoted by τ2. The Collector super-peer denotes 

Tpatch = τ2 /m. If (Ti < Tpatch) the collector Super-peer sends these objects (with 

the k-highest partial sums) as top-k objects to the originator super-peer which 

returns them to the originator peer and the algorithm terminates. But if (Ti > 

Tpatch), then two additional phases (Phase 3 & 4) are needed for each peer i where 

the above condition is true. The Collector super-peer stores all the intermediate 

results of this phase (seen objects, their scores, their partial sums). 

 Thus, the partial sums  for the seen objects are: Spsum(O4) = 21, Spsum(O2) = 17, 

Spsum(O5) = 57, Spsum(O3) = 67, Spsum(O1) = 29, Spsum(O18) = 29. Thus, the 

2 highest are Spsum(O3) and Spsum(O4) where the last is equal with τ2 since it is 

the kth. Therefore Tpatch = τ2 / m = 57 / 3 = 19.For peer1 and peer3 there is no 

such need for patch phase because their thresholds (T1=11, T3=14) are less than 

Tpatch. For peer 2 we need to execute a patch phase since T2 =26 >19. 

 In Phase 3 which is not always necessary, the Collector super-peer sends Tpatch to 

peer i as the threshold and asks for all objects whose scores are no less than Tpatch 

to be sent. Now the super-peer calculates the partial sums for all the objects seen so 

far, and identifies the objects with the k highest partial sums. The kth highest 

partial sum called “phase-3 bottom” and is denoted by τ3 threshold. 

Peer1 Phase 1 Peer2 Peer3 

 

(O4,21) (O2,17) 

(O1,29) 
(O5,34) 

( 

SP1 

 

(O3,30) 
(O5,14) 

( 

Peer1 

Phase 2 

Peer2 Peer3 

SP1 

L = {O5, O3}    

     T=10 

T1=11 

 

T2=26 

T3=14 

(O5,11) (O3,11) 

  (O18,29) (O3,26) 
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 Thus, SP1 requests from peer2 to send all its objects that are no less than Tpatch = 

19. Thus peer2 sends {O4, O14, O16, O13} and the respective scores. The partial 

sums for the current seen objects are: Spsum(O18) = 29, Spsum(O1) = 29, Spsum(O2) = 

17, Spsum(O3) = 67, Spsum(O5) = 57, Spsum(O4) = 21, Spsum(O13) = 1, Spsum(O14) = 5, 

Spsum(O16) = 2. 

 Then the super-peer tries to prune away more objects by calculating the upper 

bounds of the objects seen and have stored so far. An upper bound for  an object O 

(Usum(O)) is calculated by the formula: Usum(O)= S’1(O) + S’2(O), + … S’m(O), 

where: S‟i(O) = Si(O) if O has been reported by peer i; S‟i(O) = min(Ti, Tpatch) 

otherwise. Then the super-peer removes any object Oj from the candidate set whose 

upper bound is less than τ3 and returns the top-k candidate set. 

 In the example, SP1 calculate the upper bounds for all seen objects: S’(O18) = 54, 

S’(O1) = 54, S’(O2) = 50, S’(O3) = 67, S’(O5) = 57, S’(O4) = 44, S’(13) = 26, 

S’(14) = 30, S’(16) = 27. So, SP1 prunes O18, O1, O2, O4, O13, O14, O16 objects 

from the top-k candidate set, since their upper bounds are less than τ3 = 57. 

 The Phase 4 is necessary in the case when we have run phase 3: Since the 

Collector super-peer stores the intermediate results in this phase it just calculates 

the real scores for the top-k candidate set as it has been returned from the previous 

phase and then identifies the exact top-k objects. Finally it sends the top-k objects 

to the originator super-peer which returns them to the originator peer. 

 In the example, since the top-k candidate set from phase 3 contains exactly k=2 

objects there is no need to calculate  the real scores for these objects to determine 

the highest ones, so SP1 which is the Originator super-peer returns O3 and O5 to 

peer1 (Originator peer) as top-k objects. 

 

 

 

 

 

   

         Fig. 3. Transferred data in Phase 3            Fig. 4. Transferred data in Phase 4 

Accordingly to this algorithm, our ad-hoc policy in HT-p2p is the following: 

“When phase 1 of HT-p2p starts all the online contributor peers and their scores are 

considered. When a peer leaves the p2p network later, the algorithm continues to 

consider its data as they are valid despite the peer‟s offline status. However, in this 

case for consistency reasons we reduce the number of available contributor peers 

which is used for determining Tpatch threshold. The algorithm continues normally in 

the next steps. Also, since the top-k query is routed to a set of relevant contributor 

peers, if a new peer enters the p2p network during the execution of HT-p2p, it cannot 

be examined until the next relevant top-k query is issued. If we would like to take into 

account the new peer, the specified routing strategy should examine whether this peer 

is relevant to the top-k query and in that case it should send the query to it. But this 

means that in practice the top-k algorithm should restart since all the relevant 

parameters would need to be recomputed (thresholds, number of relevant contributor 

Peer1 
Phase 4 

Peer2 Peer3 

 

SP1 Top-k Objects = {O5,O3}  

 

Peer1 
Phase 3 

Peer2 

e

er2 

Peer3 

e

er3 

(O4,9) (O14,5) (O16,2 ) (O13,1)  

                    < Tpatch  

 

 

SP1 

 

Patch Phase for Peer2 
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peers etc). Obviously this alternative policy requires more time, network bandwidth 

and maybe causes situations of frequent restarting which surely constitutes an 

inefficient policy. 

3.5 The HT-p2p plus algorithm  

The HT-p2p plus is a distributed version of the HT-p2p. Having in mind that each 

super-peer may have under its cluster many thousands of peers, it is desirable for 

performance and scalability reasons to host one running instance of HT-p2p at each 

relevant super-peer which is executed independently of each other and in a distributed 

way. So instead of assigning all the set of peers to a single super-peer we use multiple 

super-peers and each one applies the HTp2p only to the peers for which he is 

responsible for. Then the results from all super peers are combined to determine the 

final top-k objects. It is not necessary for all super-peers to perform the same number 

of steps during the execution of HTp2p but the final phase cannot begin until all the 

Super-Peers have calculate their final top-k items. 

In HT-p2p plus, an additional role is defined, namely that of Contributor super-

peer, which contributes to the final top-k results by applying a running instance of 

HT-p2p across its relevant peers. In general, once a routing strategy has returned the 

set of ranked objects of relevant (contributor) peers for each corresponding 

(contributor) super-peer, an instance of HT-p2p plus is ready to run. If the Originator 

super-peer has the role of Contributor super-peer as well, then we select to give it the 

additional role of Collector. Otherwise, a Collector super-peer can be any of the 

Contributor super-peers. The role of Collector super-peer in HT-p2p plus is to collect 

all top-k results from the running instances of HT-p2p plus, combine them and return 

them to the Originator super-peer. 

The processing steps of HT-p2p plus are the same with HTp2p for each 

independent running instance. So each group of super-peer and peers will execute the 

HT-p2p algorithm until the point that the top-k results have been calculated in the 

Super-Peer. After that instead of returning the results to the peer the initiated the 

query, each Contributor super-peer will start communicate with the Collector super-

peer for the last phase. This last phase is required for the combination of the results 

from the contributors‟ super peers. In this phase only the super peers are required to 

exchange messages. At the end of Phase 4, the collector super-peer has to combine 

the results from all the contributor super peers. The processing steps of phase 5 are 

the following. 

 Each contributor super-peer sends its top-k objects to the Collector super-peer. 

The Collector super-peer combines all these objects and creates a list with 

discrete objects (L1).   

 The collector super-peer sends this list to all the Contributor super-peers and asks 

the scores for these objects. When, all super-peers answer he calculates and stores 

the scores for all objects in L1 and identifies the objects with the k highest sums 

.The kth highest sum will be called “phase 5 bottom” (τ5). 
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 The collector super-peer sets a threshold for phase-5  (where z is 

the number of the contributor super-peers) and announces (with a broadcast) this 

threshold to all the contributor super-peers. 

 Then each contributor super-peer sends to the Collector super-peer the objects 

(and their scores) with scores greater than  so a new list with discrete 

objects can be created (L2) and stored.  

 The final top-k objects will be calculated from the set L3= {L1 ∩ L2}. The 

collector super-peer has stored all the information for the objects in this list and 

in the previous steps and there is no need for further communication actions. 

 

After this point the Collector super-peer has identified the final top-k objects and 

can return them to the peer that initiated the query. It is important that during the 

merging of the results from the Contributor super-peers we will not conclude to 

incorrect results. The correctness of HT-p2p and HT-p2p plus is based on the native 

proof of [5]. However, the following paragraph explains why the steps of phase 5 

should always return a correct candidate set of objects. 

 

Lemma 1 

Phase 5 will include in the final candidate set any Object with score high enough 

to be a top-k object even if it is not present in the initial L1 list. 

 

 

Proof: 

Assume that we have z in number super-peers and  is the phase 5 bottom. Also 

we assume that A1, A2 ,A3,.....,Az are the kth scores from each super peer (each score  

can belong to a different Object). It is possible that there will be an object with scores 

O1 < A1, O2 <A2, O3 <A3 ... but with total score=O1+O2+...+Oz greater than Ab. We 

will show that the algorithm will include this object in the final candidate top-k set of 

objects.  

Assume that O has final scores O1 < A1, O2 < A2 …, Oz<Az in each Super Peer. 

Assume also, that the sum O1+ O2 +O3+…+Oz >  (1) can be expressed as a sum 

of z in number of  .So (1) is equivalent 

with .  So at least one the final scores 

O1,,..Oz has to be greater than  (if  > Oi for each Super Peer then  

will be greater than the sum of final scores O1+ O2 +O3+…+Oz and we assumed it is 

not (1)). So since we have at least one score Oi which is greater than  the 

algorithm will include it in the final set. 

 

 

Lemma 2  

Any object left out of the candidate set cannot be a TOP-K object 

 

Proof: 

Assume z in number super-peers for an object O which is not included to the final 

candidate set must be: 
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  .  (1) 

So  meaning that 

TotalScoreForObject(O) <  phase 5 bottom  (2).  

But, always: phase 5 bottom  The final k highest score (3). From (2) and (3) we 

conclude that O is not a top-k object.  

4   Evaluation 

4.1 Evaluation of algorithms in p2p networks. 

The evaluation of data-centric algorithms like top-k threshold query processing 

algorithms could be done either by implementing all algorithms upon a network 

platform or by using a network simulator. One of the most famous and widely used 

network platforms is JXTA [18]. It provides a common set of open protocols and an 

open source reference implementation for developing general purpose, interoperable 

and large scale P2P applications. However by using JXTA the supported scalability of 

peers is limited to less than 50 peers with the use of evaluation techniques like [13]. In 

any case, it is obvious that we need a more powerful and flexible tool in order to run 

our algorithms simultaneously upon large-scale p2p networks, to draw safe 

conclusions. This could be done by simulating all these algorithms which is far more 

efficient and less costly than actual implementations and without the need strong 

computational power. A variety of simulators can be found in the literature or in the 

web for the evaluation of algorithms in p2p networks; each of them has been designed 

for specific purposes [19]. In fact the majority of network simulators belong to 

network-oriented or designed for specific needs .Especially for top-k threshold query 

processing algorithms we conclude that the four simulators  PlanetSim [20] 

,Overlayweaver [21], PeerSim [22] and P2psim [23] seem  to adapt in our case, so we 

evaluate them based on the following criteria: 

 

 Architecture. It is related to the design and the functionality of the 

simulator. In other words it is the way the features have been implemented. 

 Usability.  Refers to how convenient the simulator is to use and understand. 

This is closely related with the documentation, API and the activity of the 

corresponding community support. 

 Scalability.  Refers to how many nodes can be supported and how the 

simulator scales when the nodes are increasing. 

 Ability to host applications in nodes. This means that we could run any 

algorithm in each node with a few adaptations, instead of rewriting all 

algorithms to simulator API and language.   

 Statistics. The ability to gather the results and produce statistics for our 

experiments. More specifically, the measured bandwidth over the network, 

the numbers of messages send from each node and total execution times are 

the most desired features for monitoring algorithms. 
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Table 4. Evaluation of p2p simulators 

Simulator Architecture Usability Scalability 

    #peers 

Host 

applications 

Statistics 

P2PSim Discrete-event 
for structured 

P2P networks 

Poor 
documentation 

3000 Yes (C++) Limited set 
of statistics  

Overlay 

Weaver 

Distributed  

Emulation 

Good API but 

very poor 

documentation 

150000 Yes (Java) N/A 

PlanetSim Discrete-event 

simulation, 
distinct 

separation of 

services and 
overlay 

Good tutorials 

,Very good 
API and 

documentation 

100000 Yes (Java) Supports 

Statistics & 
Visualizer 

PeerSim Query-Cycle or 

Discrete-event 

simulation 

Only query-

cycle is 

documented 

10^6 

 

N/A Requires 

implementa

tion of 
components  

 

 

Our study leads us to the selection of PlanetSim [20] simulator although the 

majority of these algorithms could not support fully simultaneous distributed routing 

of messages. The PlanetSim‟s architecture (see figure 5 below) comprises three main 

extension layers constructed one on top of another. Applications are built in the upper 

layer using the standard Common API facade. This facade is built on the routing 

services offered by the underlying overlay layer. Besides, the overlay layer obtains 

proximity information to other nodes asking information to the Network layer. The 

Simulator dictates the overall life cycle of the framework by calling the appropriate 

methods in the overlay's Node and obtaining routing information to dispatch 

messages through the Network. 

 

 
Fig. 5. The PlanetSim‟s Core Architecture 

4.2 Evaluation Setup 

The goal of this evaluation is to demonstrate each algorithm's behavior, under 

various circumstances which would be of important significance as top-k query 
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algorithms are highly important in modern p2p systems. The three main aspects that 

were used for the evaluation of each algorithm were the following: The bandwidth 

usage, the total (execution) time and the number of objects accessed (seen objects). 

The network and time factors are used for the quantitative evaluation, while the 

objects factor is used for qualitative evaluation.  Each of the above was observed with 

the following criteria under consideration: the number of peers in the network, the 

number of objects located on each peer and the distribution that the score objects 

follow among the peers. We also measured the time in which the “Super-Peer” needs 

to store and process the results which receive from the peers in each phase. We named 

this unit calculation time. 

Some previous works have assumed that the ranked data following a uniform 

distribution across the nodes. However this is not realistic enough, so more datasets 

are needed in order to carefully evaluate each algorithm. Also little research has been 

done around the scalability of the algorithms when the number of nodes is increasing. 

For our experiments we generated 3 types of datasets that follow normal, uniform and 

zipfian distributions for a large number of peers, using the libraries of [24]. Also we 

collected manually some real datasets from imdb.com [25] as it contains rankings 

from real users to real objects (movies). We spread the scores of highly ranked 

movies across peers and we make the IMDB spread dataset. In this dataset all peers 

contain unique and different (Object, Score) pairs following horizontal data 

partitioning. In all other datasets, as well, we produced synthetic data to evaluate 

cases where data were too or less similar among peers by using the random walk 

model. Thus each score at each peer i is s[i] = S[i-1] + C, where C is a constant. For 

all experiments Planetsim version 3.0 was used as the simulation tool. For all 

simulated networks CHORD overlay [26] was used.  The simulation was performed 

on a Pentium® 4 3.0GHZ 3.0GHZ with 1.5GB of RAM. The Java version was 

1.6.0_10 under WINDOWS XP SP3. For each experiment the computer was in safe 

mode. Each time presented in the experiments, is the average time from 5 runs. Also, 

in all experiments the top-10 items were asked from each algorithm. 

4.2 Experiments 

4.2.1. Evaluating bandwidth consumption.   
 

The intention of the first experiment was to compare threshold algorithms in 

terms of bandwidth consumption. As we talk about an algorithm that process online 

data across the network it is crucial to study this parameter which affects the general 

efficiency of the whole top-k query processing technique. Surely since the top-k 

threshold algorithms transfer messages which include (Object_id, Score) pairs and 

some control information, this means that we don’t expect too large bandwidth 

consumption. On the other hand our intention is to compare all the relative algorithms 

of this family to check from this aspect their scalability and efficiency. 

Thus, we measured for a given set of peers, the size of transferred messages each 

algorithm uses until it returns the final results. We tested HT-p2p, TPUT, Naive 

algorithm and the HT-p2p plus for different cases of peers per Super-Peers. We 

marked as HT-p2p plus BEST, the case in which the HT-p2p plus algorithm exhibits 
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the best behaviour while HT-p2p WORST is the corresponding worst case against the 

tested cases.  All datasets lead us to the similar conclusions about the network 

performance of threshold algorithms in top-k query processing. 

We present the results of three datasets, the zipfian dataset {A=1, range of scores 

from one to 500}, uniform {n=150 values, range= (1, 500)} and the IMDB real 

synthetic dataset. In the first and the second case we had a maximum of 75000 objects 

(150 objects per contributor peer) across 500 peers, where in the second we had 

100000 objects (250 objects per contributor peer) across 400 peers. Our first 

observation could be clearly that the values between BEST and WORST case were 

close enough. Figures 6, 8, 10 and table 5, 6, 7 below present these results. We also 

present the different running cases of HT-p2p plus according to the network topology. 

(see figures 7, 9, 11) For example, 4x5 in topology means that we had 4 contributor 

Super-Peers and 5 contributor peers running the algorithm. 

From this kind of experiments, we can draw four main conclusions. Firstly, HT-

p2p plus exhibits in most cases the best bandwidth performance. The differences 

between the HT-p2p-plus BEST and WORST were negligible. Secondly, the TPUT 

algorithm in all cases transferred more bytes than the naive algorithm. In general HT-

p2p plus and HT-p2p manage to reduce the bandwidth considerably. Specifically in 

all datasets for HT-p2p and HT-p2p plus algorithm we got about 100-497 % and 160-

545 % less bandwidth consumption as compared with Naive and TPUT threshold 

algorithm respectively. For zipfian and uniform distributions the results were similar, 

but we measured sharper increases for HT-p2p plus algorithm, while in some cases 

of real “synthetic” data (IMDB), HT-p2p was better in bandwidth consumption. It is 

worth noting that when the HT-p2p plus BEST was second after HT-p2p, both 

algorithms were close enough. So, we can conclude that HT-p2p plus is in general the 

most economic for bandwidth usage.  

Our last but not least conclusion about HT-p2p plus and the different running cases 

is that for zipfian and uniform data distribution the more super-peers we used the less 

bytes transferred. In these cases the algorithm finished in two running phases. Is is 

noteworthy that all best cases for this kind of data were identical. But for IMDB data, 

where we noticed some patch phases (i.e two additional communication phases 

required for each running instance of Contributor Super-Peer) we could not claim the 

same argument as we got different values for best and worst cases for different 

datasets of HT-p2p plus. Consequently the network structure affects clearly the 

bandwidth consumption only if we run the standard phases of the algorithm. Maybe 

more experiments with different simulators or collected datasets are required to draw 

a safer conclusion about the cases when patch phases are necessary. 
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Fig. 6  Total number of transferred bytes for zipfian dataset 

 

Table 5. Transferred Bytes for Zipfian Dataset 

Peers 
HT-

p2p 
TPUT Naive 

HT-p2p 

BEST / 

Topology 

HT-p2p 

WORST 

/ 

Topology 

20 12246 37147 27329 
10644 
/4x5 

11157 

/2x10 

50 33855 98063 68282 
27898 

/5x10 

32304 

/2x25 

100 72123 201860 136554 
55662 

/10x10 

67397 

/2x50 

200 146178 406095 273122 
110820 

/20x10 

139926 

/2x100 

400 304448 826644 546352 
260519 

/10x40 

278563 

/4x100 

500 380283 1032800 682873 
264833 

/100x5 

349610 

/5x100 
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Fig. 7  HT-p2p plus cases for zipfian dataset 

 
 

Fig. 8  Total number of transferred bytes 

 

Table 6. Transferred Bytes for Uniform Dataset 

Peers 
HT-

p2p 
TPUT Naive 

HT-p2p 

BEST / 

Topology 

HT-p2p 

WORST / 

Topology 

20 27511 44024 30205 27563 /4x5 28013 /2x10 

50 73477 121243 75525 68871 /5x10 71137 /2x25 

100 146915 261702 151026 137579/10x10 146091 /2x50 

200 
297204

  
541151 302032 283504/20x10 296797/2x100 

400 595946 1155606 603904 578282/10x40 590383 /5x80 

500 750497 1500936 754899 674330/100x5 740945/5x100 
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Fig. 9  HT-p2p plus cases for uniform dataset 

 

 

Fig. 10  HT-p2p for IMDB dataset 

 

Fig. 11  HT-p2p plus cases for IMDB synthetic dataset 



Ioannis Chrysakis, Contantinos Chalkidis and Dimitris Plexousakis 

19  

 

Table 7. Transferred Bytes for IMDB Synthetic Dataset 

Peers 
HT-

p2p 
TPUT Naive 

HT-p2p 

BEST / 

Topology 

HT-p2p 

WORST 

/ 

Topology 

20 20077 80755 74165 
19994 

/ 4x5 

20012 

/ 2x10 

50 43222 235767 214902 
 56472 

/2x25 

72645 

/ 5x10 

100 151228 505026 460039 
166022 

/10x10 

175159 

/5x20 

200 313251 1070057 976104 
328924 

/2x100 

358702 

/10x20 

400 771749 2223911 2039857 
762621 

/4x100 

767427 

/ 5x80 

 

 

4.2.2. Evaluating execution time performance. 

   

In the second experiment we measured the execution time each algorithm takes to 

return the final top-k results. In this experiment we measured the total time each 

algorithm takes to return the final top-k results and the clear processing time which is 

the calculation time. In fact the calculation time, is the time the Super-Peer(s) spend 

on sorting-calculating- “processing” the items-scores, that receives from the peers. 

Here we should make an important note about PlanetSim simulator. It cannot 

support a fully distributed message mechanism at Super-Peers and it is based on a 

random network topology. This means that it is not fair enough to compare HT-plus 

with the others who only need just one Super-Peer. On the contrary, it is noteworthy 

that the HT-plus BEST is better in execution time than TPUT and not far from the 

HT-p2p which is the optimal. The low calculation times at each Super-Peer and this 

limitation of the simulator give us the opportunity to claim that a new fully distributed 

version of the simulator could bring HT-p2p plus (BEST) on the first position. We 

present in this subsection representative results of the real IMDB datasets and the 

zipfian dataset in figure 12 and 13 respectively. The main difference besides these 

cases is that in the first case the HT-p2p algorithm needs mostly some patch phases to 

complete its execution, while in zipfian dataset in all cases it the results returned just 

in two phases of the algorithm. This could explain firstly the large differences at times 

for the same size of peers. Especially, for IMDB dataset the sorted order of time-

efficiency is: {Naive, HT-p2p, HT-p2p BEST, HT-p2p WORST, TPUT} in all cases of 

peers. But for zipfian datasets the order for 20, 50,100,200,400 and 500 peers was not 

the same:  

 {Naive, HT-p2p BEST, HT-p2p, TPUT, HT-p2p WORST} 

 {Naive, HT-p2p BEST, HT-p2p, HT-p2p WORST, TPUT} 

 {Naive, HT-p2p, HT-p2p BEST, HT-p2p WORST, TPUT} 

 {Naive, HT-p2p, HT-p2p BEST, TPUT, HT-p2p WORST} 

 {Naive, HT-p2p, HT-p2p BEST, TPUT, HT-p2p WORST} 



ICS-FORTH, Technical Report 407, July 2010 

20  

 

As we could see in the first two cases the distributed HT-p2p BEST finished before 

HT-p2p while in the last two phases the HT-p2p WORST presented the worst of 

behaviour on time performance. In these worst cases the number of Contributor 

Super-Peers was much greater than the contributor peers (50x8 and 100x5).  

 

 

 

Fig. 12  Total time of execution in seconds for IMDB dataset 

 

 
 

Fig. 13  Total execution time  in sec for zipfian dataset (no any patch phase appeared) 

 

As comparing total execution time against calculation time in HT-p2p plus we could 

say clearly that most of the time is spent in sending/receiving messages, which could 
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be caused by the simulator (see figure 14 and table 8 below). In this figure which 

corresponds to the case when we had the maximum number of Super-Peers for zipfian 

dataset, the percentage of calculation time through the total time is varying from 5.7 

% to 18.9%, which is the worst case for calculation time. It is noteworthy that as we 

the size of participating peers increases the calculation time falls dramatically in most 

of the cases. Thus, the distributed nature of HT-p2p proved to share the calculation 

cost among peers due to load balancing at contributor Super-Peers. In table 9 

suggestively, we can view the specific results of the representable HT-p2p plus best 

case 4x100 of calculation times at each Super-Peer using IMDB real synthetic data. It 

is clear that at this experiment the calculation time is taking just the 1% of the total 

time.  But this rate in other datasets (zipfian, normal, IMDB spread) can take up to 

18.9 % of the total time.  

 

 

Fig. 14  Calculation vs. total execution time for zipfian dataset for HT-p2p plus 

 

Table 8.   Calculation time of execution in seconds for zipfian dataset in HT-p2p plus 

 

Peers  20 50 100 200 400 500 

HT-p2p 

plus 

Calculation 

Time  0,0801 0,178 0,330 0,688 1,620 2,825 

HT-p2p 

plus Total 

Time 0,4224 1,031 2,268 6,559 26,209 49,180 

Used 

Super-

Peers 4 5 10 20 50 100 

Percentage 
of 

Calculation 

Usage 18,966 17,3 14,55 10,48 6,18 5,74 
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Table 9. Calculation Times of 4x100 case for HT-p2p plus BEST using IMDB data 

Super-Peer ID 
Calculation Time 

(sec) 

1 0,122 

2 0,1652 

3 0,1196 

4 0,1108 

Total Calculation/ Full Execution 

Time (s) 
0,6262 / 62,196 

 

 

Four main conclusions could arise from this experiment. Firstly, the naive case 

proved to be optimal for all datasets, two or three times faster than HT-p2p. Surely for 

this result we should take into account two things. The first has to do with the 

Planetsim limitation of distributed running and the other has to do that the naive 

algorithm presented the maximal bandwidth consumption which is not surely 

preferable. Secondly for both HT-p2p and plus, up to 200 peers, we have a linear 

increase in total execution time which becomes sharper if we increase the number of 

contributor peers to 400 or 500. Thirdly, due to the nature of the simulator HT-p2p 

needs the least time to return the final results, but, most of the times HT-p2p plus, due 

to load balancing, needs fewer time to process the scores. Finally TPUT appears to 

need more than 300% more time than HT-p2p and HT-p2p plus. The trade-off 

between time and network consumption arises clearly from this experiment.  

 

 

 

4.2.3. Accessed objects – Seen Objects. 

 

We also checked in the third experiment how many objects were accessed from 

databases to retrieve their scores termed as the seen objects. We check substantially 

HT-p2p vs. TPUT with this qualitative characteristic as soon as the HT-p2p plus 

presents the same behaviour with the HT-p2p while naive case includes the maximum 

number of objects. We noticed that all basic threshold algorithms (HT-p2p, TPUT) 

access the more than 80% of the objects for all 0datasets. In some cases HT-p2p and 

TPUT had the ideal behaviour (IMDB spread dataset, see figure 15) but in other 

datasets HT-p2p is better (IMDB synthetic, normal, zipfian), see fig.16. TPUT 

presented the better behaviour when we had the maximum number of scores per peer 

(1000 items) for normal or uniform data distribution. The latter corresponds to the 

best case for TPUT (see figure 17), something which was expected as soon as it is 

designed for this kind of scoring distributions.  But, in most of the other cases TPUT 

has the maximum number of seen objects which is identical to the naive algorithm. 

When we used synthetic and similar enough datasets the seen objects were reduced 

dramatically for HT-p2p and HT-p2p plus. Thus for the normal synthetic case the HT-

p2p algorithm examined as seen objects the actual top-10 ones. From the other hand 

in this case TPUT examined all the items which is identical to the naïve case. The 

general conclusion here is that for similar synthetic data HT-p2p has the best 
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behaviour. On the other hand, the high rates in seen objects is a topic for further study 

and discussion to discover maybe more advanced methods for defining thresholds 

maybe by using specified peer thresholds instead of global thresholds with techniques 

such as the ones of [10]. 

 

 

Fig. 15  Seen objects for IMDB spread dataset 

 

 

Fig. 16  Seen objects for various synthetic datasets 
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Fig. 17  Seen objects for various distribution datasets 

5   Conclusion and Discussion 

Top-k query processing is a of fundamental primary importance cornerstone for an 

effective search in distributed networks which is crucial for p2p applications such as 

digital libraries, social communities, preference queries over product catalogs, file 

sharing, sensor network monitoring, web logs analysis etc. Exact threshold-based top-

k algorithms could be the solution for searching in modern p2p applications that 

maintain ranked data or take as input ranked data accordingly to their needs. The new 

extended versions of HT, HT-p2p and HT-p2p plus presented promising results in 

terms of bandwidth consumption which is the most crucial parameter as the size of 

p2p networks increases daily.  

However, there are some points which need to be studied further in order to 

improve the time performance of threshold-based algorithms. Thus we could use 

heuristics to detect very large or low scores which could cause the recalculation of 

intermediate thresholds and to adapt relatively accordingly to our global thresholds. In 

addition, we could use different thresholds for each peer using techniques like these in 

[10] instead of global thresholds. As well, some further extensibility suggestions to 

the direction of speed improvement could be the caching of top-k results in order to 

return immediately the questions that have been answered in the early recent past or 

the application of timeout techniques for slow contributor peers or for delayed 

contributor super-peers. The last suggestion could enhance especially the switching 

from HT-p2p plus to HT-p2p to archive the speed up of the whole aggregation 

process. 

Some other topics of discussion could be the definition of some criteria to define 

each time which peer could play the role of super-peer: accordingly to the 

computational power, to the network distance and topology, the possible network 

failures etc. The last constitutes to an important related problem of peer failures 
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during query execution. A solution to this problem can be found in [27], where a re-

organization step for the affected portion of the query execution plan could be applied 

in each network failure. Also we could use of the notion of k-redundant Super-Peer 

which was introduced in [28]. A super-peer is k-redundant if there are k nodes sharing 

the super-peer load, forming a single “virtual” super-peer. Every peer in the virtual 

super-peer is a partner with equal responsibilities: each partner is connected to every 

client and has a full index of the clients’ data, as well as the data of other partners. 

Peers send queries to each partner in a round-robin fashion; similarly, incoming 

queries from neighbours are distributed across partners equally. Hence, the query load 

on each partner is a factor of k less than on a single Super-Peer with no redundancy. 

Therefore, a k-redundant Super-Peer has much greater availability and reliability than 

a single super-peer and could be used to solve the specific problem of failure. 

Apart from these extensibility suggestions our plans for the future include the 

comparison of the HT-plus in a new fully- distributed simulation platform to evaluate 

more precisely its behaviour with time. Also, we plan to study firstly the support top-

k join queries and secondly the support of non- monotonic aggregation functions in 

order to enrich our query capabilities. These characteristics could give to the future 

peer data management systems the ability to of answering more complex queries and 

fulfilling more advanced user demands. 
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